当前位置: 首页 > news >正文

PaddlePaddle的OCR模型转onnx-转rknn模型_笔记4

一、PaddlePaddle的OCR模型转onnx

1、首先建立一个新的虚拟环境
conda create -n ppocr python==3.10 -y

conda activate ppocr
2、进入paddlepaddle官网输入以下指令安装paddlepaddle GPU版本

(我的cuda版本是11.8,根据你电脑装合适版本)

pip install paddlepaddle-gpu==2.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
3、进入PaddlePaddle / PaddleOCR官网下载 PaddleOCR_2.7版本,放在你主目录下:

首先要克隆paddleocr项目,项目地址。(老是有地址不能用多备几个)

git clone https://github.com/PaddlePaddle/Paddle.git

# 克隆到本地

git clone https://gitcode.com/gh_mirrors/pa/PaddleOCR.git

之后安装命令:

pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/

4、安装RKNNtoolkit2

ONNX转换为RKNN模型需要使用官方rknn_model_zoo工具:rknn_model_zoo-2.2.0
该处环境部署代码使用到官方rknn-toolkit2工具:rknn-toolkit2

RKNNtoolkit2的作用是将onnx模型转为rknn模型

在该文件夹下找到你对应的python版本

pip install -r requirements_cp310-2.3.0.txt -i https://mirrors.aliyun.com/pypi/simple/

安装paddle2onnx

这一步为下面模型转换做打算:
paddle2onnx的作用:
paddle模型------>onnx模型
RKNNtoolkit2的作用:
onnx模型------>rknn模型

安装paddle2onnx的过程极为简单,在终端输入:

pip install paddle2onnx

至此,ubuntu上面的环境已经搭建完毕!!!

5、OCR程序的编译
官方教程

按照官方教程安装三个模型:
此处装模型操作均在Ubuntu系统上,注意不是在板子上!!!

PaddleOCR模型下载,PaddleOCR模型官网

最新更新模型地址:ppocr模型官网

下载到你的ppocr目录的一个文件夹下:

随即进入paddle----onnx模型步骤

paddle2onnx --model_dir ch_PP-OCRv4_det_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ch_PP-OCRv4_det_infer/ch_PP-OCRv4_det_infer.onnxpaddle2onnx --model_dir ch_ppocr_mobile_v2.0_cls_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx--enable_auto_update_opset paddle2onnx --model_dir ch_PP-OCRv4_rec_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ch_PP-OCRv4_rec_infer/ch_PP-OCRv4_rec_infer.onnx

然后固定onnx模型的形状:
这里需要注意的是,根据ubuntu系统上python版本的不同,python指令可能会替换为python3
# 固定模型的输入shape

python3 -m paddle2onnx.optimize --input_model ch_PP-OCRv4_det_infer/ch_PP-OCRv4_det_infer.onnx \--output_model ch_PP-OCRv4_det_infer/ch_PP-OCRv4_det_infer.onnx \--input_shape_dict "{'x':[1,3,960,960]}"python3 -m paddle2onnx.optimize --input_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \--output_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \--input_shape_dict "{'x':[1,3,48,192]}"python3 -m paddle2onnx.optimize --input_model ch_PP-OCRv4_rec_infer/ch_PP-OCRv4_rec_infer.onnx \--output_model ch_PP-OCRv4_rec_infer/ch_PP-OCRv4_rec_infer.onnx \--input_shape_dict "{'x':[1,3,48,320]}"

至此执行完毕后,paddle模型转到onnx模型完毕,接下来是onnx模型转到rknn模型。

二、PaddlePaddle的OCR模型onnx在转rknn模型

把对应的python包放入你的ppocr目录下安装转换RKNN模型的环境:执行

pip install -r requirements_cp310-2.3.0.txt -i https://mirrors.aliyun.com/pypi/simple/

将这个rknpu2_tools文件夹的内容搬到ppocr文件夹下

修改yaml文件路径和你的模型文件对应

随后输入以下三条指令:

python3 rknpu2_tools/export.py --config_path rknpu2_tools/config/ppocrv3_det.yaml --target_platform rk3588
python3 rknpu2_tools/export.py --config_path rknpu2_tools/config/ppocrv3_rec.yaml --target_platform rk3588
python3 rknpu2_tools/export.py --config_path rknpu2_tools/config/ppocrv3_cls.yaml --target_platform rk3588

当三条指令结束运行时,终端内容应该都是:

D RKNN: [14:06:30.472] Total Internal Memory Size: 519.75KB
D RKNN: [14:06:30.472] Total Weight Memory Size: 339.188KB
D RKNN: [14:06:30.472] ----------------------------------------
D RKNN: [14:06:30.472] <<<<<<<< end: rknn::RKNNMemStatisticsPass
I rknn building done.
I Target is None, use simulator!
Export OK!

没有完善,有时间完善一下

可以看到rknn模型已经生成了

三、在RK3588的板子上完成fastdeploy及python的编译

这里直接参考我的另一篇文章

pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

后面开发板要用到的环境

把这个文件放在你的开发板上,3588

FastDeploy库的编译(在rk3588板子上进行)
rk3588性能强劲,可以直接在板子上借助图形界面编译FastDeploy库

使用git clone https://github.com/PaddlePaddle/FastDeploy.git指令拉取代码

官网fastdeploy官网

下载FastDeploy-release-1.0.7

放到你的工作目录下执行:

后面的步骤直接参考我的另一篇文章就行

 链接:ppocr部署在RK3588_python编译-2_rk3588怎么做ocr识别-CSDN博客

参考:记录如何在RK3588板子上跑通paddle的OCR模型。重点是对齐rknntoolkit版本和板子上的librknnrt.so库_paddleocr rk3588-CSDN博客

http://www.lryc.cn/news/538769.html

相关文章:

  • OpenHarmony 系统性能优化——默认关闭全局动画
  • 【Linux】Ubuntu Linux 系统——Node.js 开发环境
  • LC-搜索二维矩阵II、相交链表、反转链表、回文链表、环形链表、环形链表ll
  • 小米平板怎么和电脑共享屏幕
  • Python elasticsearch客户端连接常见问题整理
  • 目标检测IoU阈值全解析:YOLO/DETR模型中的精度-召回率博弈与工程实践指南
  • 算法——数学建模的十大常用算法
  • Electron:使用electron-react-boilerplate创建一个react + electron的项目
  • 在linux系统中安装Anaconda,并使用conda
  • 渗透测试--文件包含漏洞
  • Go入门之语言变量 常量介绍
  • DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
  • 【机器学习】深入浅出KNN算法:原理解析与实践案例分享
  • C#使用文件读写操作实现仙剑五前传称号存档修改
  • 计算机专业知识【探秘 C/S 工作模式:原理、应用与网络协议案例】
  • Django创建一个非前后端分离平台
  • 适用于iOS的应用商店优化(ASO)清单
  • SSH远程服务器免密码连接|含注意事项细节
  • 本地通过隧道连接服务器的mysql
  • Hadoop 基础原理
  • JavaScript 任务队列详解:Event Loop、宏任务与微任务
  • VScode运行后出现黑窗口
  • 华为昇腾 910B 部署 DeepSeek-R1 蒸馏系列模型详细指南
  • vue3项目实践心得-多次渲染同一svg + 理解v-if、transition、dom加载之间的顺序
  • 【实战项目】BP神经网络识别人脸朝向----MATLAB实现
  • java数据结构_二叉树_5.5
  • Deepseek-R1推理模型API接入调用指南 ChatGPT Web Midjourney Proxy 开源项目接入Deepseek教程
  • 计算机网络(4)TCP断开
  • 科技云报到:科技普惠潮流渐起,“开源”将带我们走向何方?
  • 【论文笔记】On Generative Agents in Recommendation