当前位置: 首页 > news >正文

Win10环境借助DockerDesktop部署大数据时序数据库Apache Druid

Win10环境借助DockerDesktop部署最新版大数据时序数据库Apache Druid32.0.0

前言

大数据分析中,有一种常见的场景,那就是时序数据,简言之,数据一旦产生绝对不会修改,随着时间流逝,每个时间点都会有个新的状态值。这种时序数据的量级往往异常夸张,例如传感器的原始监控数据:

https://lizhiyong.blog.csdn.net/article/details/114898620

一个简单的加速度传感器一年的数据量就是31e!!!制造业传感器数据如果不经底层PLC等下位机预处理,直接打到边缘计算网关,即使mqtt也会有巨大的负载!!!

类似的,还有服务器的原始监控数据,例如常见的PrometheusZabbix,当集群很多时,监控项同样很多,再算上虚拟化后的容器和虚拟机内都可能部署了监控,此时的数据量级就灰常可观!!!一小时几百亿条数据都是常见的事情!!!

但是很多原始的监控数据如果全部存下来,存储成本高的可怕,同时信息密度极低,更多时候我们可能只关注近期的全部热数据来做在线的模型训练,人工查看每秒钟几千条数据也是不切合实际的,事实上,做一个简单的秒级/分钟级统计就能满足大多数的分析场景,超过1天的冷数据其实已经没什么时效性。

对于此类场景,可以高吞吐、预聚合的数据库,在压测后,从Apache DruidClickhouseKylin中,选择了前者。。。专业的事情要交给专业的组件去做!!!

对于非内核和二开的业务开发人员,更多场景应该关注的是API、特性及用法,不应该在部署这种事情上花费太多精力!!!笔者之前已部署了Docker Desktop:

https://lizhiyong.blog.csdn.net/article/details/145580868

今天在Win10环境再搭建个Apache Druid最新版玩玩。

版本选择

官网:

https://druid.apache.org/

注意不是阿里数据库连接池的那个Druid!!!

在这里插入图片描述

截至2025-02-13Apache Druid最新版本是32.0.0

资源准备

参考官网:

https://druid.apache.org/docs/latest/tutorials/docker

官方给出了使用docker-compose.yml编排容器的教程,作为一个实时组件,大内存是必须的!!!但是启动8个容器【Zookeeper+PostgreSQL+6个Druid】每个最多7GB内存也不是什么大事!!!

https://raw.githubusercontent.com/apache/druid/32.0.0/distribution/docker/docker-compose.yml

获取到这个资源文件:

version: "2.2"volumes:metadata_data: {}middle_var: {}historical_var: {}broker_var: {}coordinator_var: {}router_var: {}druid_shared: {}services:postgres:container_name: postgresimage: postgres:latestports:- "5432:5432"volumes:- metadata_data:/var/lib/postgresql/dataenvironment:- POSTGRES_PASSWORD=FoolishPassword- POSTGRES_USER=druid- POSTGRES_DB=druid# Need 3.5 or later for container nodeszookeeper:container_name: zookeeperimage: zookeeper:3.5.10ports:- "2181:2181"environment:- ZOO_MY_ID=1coordinator:image: apache/druid:32.0.0container_name: coordinatorvolumes:- druid_shared:/opt/shared- coordinator_var:/opt/druid/vardepends_on:- zookeeper- postgresports:- "8081:8081"command:- coordinatorenv_file:- environmentbroker:image: apache/druid:32.0.0container_name: brokervolumes:- broker_var:/opt/druid/vardepends_on:- zookeeper- postgres- coordinatorports:- "8082:8082"command:- brokerenv_file:- environmenthistorical:image: apache/druid:32.0.0container_name: historicalvolumes:- druid_shared:/opt/shared- historical_var:/opt/druid/vardepends_on: - zookeeper- postgres- coordinatorports:- "8083:8083"command:- historicalenv_file:- environmentmiddlemanager:image: apache/druid:32.0.0container_name: middlemanagervolumes:- druid_shared:/opt/shared- middle_var:/opt/druid/vardepends_on: - zookeeper- postgres- coordinatorports:- "8091:8091"- "8100-8105:8100-8105"command:- middleManagerenv_file:- environmentrouter:image: apache/druid:32.0.0container_name: routervolumes:- router_var:/opt/druid/vardepends_on:- zookeeper- postgres- coordinatorports:- "3012:8888" #这里笔者改为3012防止霸占有用的端口command:- routerenv_file:- environment

参照官网另一篇:

https://druid.apache.org/docs/latest/configuration/

自己玩玩可以先不改这些运行时配置,容器启动的,后续要重新部署也非常容易!!!

还需要:

https://raw.githubusercontent.com/apache/druid/32.0.0/distribution/docker/environment

做另一个配置文件:

# Java tuning
#DRUID_XMX=1g
#DRUID_XMS=1g
#DRUID_MAXNEWSIZE=250m
#DRUID_NEWSIZE=250m
#DRUID_MAXDIRECTMEMORYSIZE=6172m
DRUID_SINGLE_NODE_CONF=micro-quickstartdruid_emitter_logging_logLevel=debugdruid_extensions_loadList=["druid-histogram", "druid-datasketches", "druid-lookups-cached-global", "postgresql-metadata-storage", "druid-multi-stage-query"]druid_zk_service_host=zookeeperdruid_metadata_storage_host=
druid_metadata_storage_type=postgresql
druid_metadata_storage_connector_connectURI=jdbc:postgresql://postgres:5432/druid
druid_metadata_storage_connector_user=druid
druid_metadata_storage_connector_password=FoolishPassworddruid_indexer_runner_javaOptsArray=["-server", "-Xmx1g", "-Xms1g", "-XX:MaxDirectMemorySize=3g", "-Duser.timezone=UTC", "-Dfile.encoding=UTF-8", "-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager"]
druid_indexer_fork_property_druid_processing_buffer_sizeBytes=256MiBdruid_storage_type=local
druid_storage_storageDirectory=/opt/shared/segments
druid_indexer_logs_type=file
druid_indexer_logs_directory=/opt/shared/indexing-logsdruid_processing_numThreads=2
druid_processing_numMergeBuffers=2DRUID_LOG4J=<?xml version="1.0" encoding="UTF-8" ?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{ISO8601} %p [%t] %c - %m%n"/></Console></Appenders><Loggers><Root level="info"><AppenderRef ref="Console"/></Root><Logger name="org.apache.druid.jetty.RequestLog" additivity="false" level="DEBUG"><AppenderRef ref="Console"/></Logger></Loggers></Configuration>

部署文件看起来麻雀虽小五脏俱全!!!

部署

PS C:\Users\zhiyong> cd E:\dockerData\volume\druid1
PS E:\dockerData\volume\druid1> ls目录: E:\dockerData\volume\druid1Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
-a----        2025-02-13     23:26           2980 docker-compose.yml
-a----        2025-02-13     23:33           1576 environment
PS E:\dockerData\volume\druid1> docker compose up -d
time="2025-02-13T23:34:39+08:00" level=warning msg="E:\\dockerData\\volume\\druid1\\docker-compose.yml: the attribute `version` is obsolete, it will be ignored, please remove it to avoid potential confusion"
[+] Running 72/15✔ router Pulled                                          230.7s ✔ coordinator Pulled                                     230.7s ✔ postgres Pulled                                        181.0s ✔ historical Pulled                                      230.7s ✔ broker Pulled                                          230.7s ✔ middlemanager Pulled                                   230.7s ✔ zookeeper Pulled                                        85.7s [+] Running 15/15✔ Network druid1_default           Created                 0.1s ✔ Volume "druid1_druid_shared"     Created                 0.0s ✔ Volume "druid1_historical_var"   Created                 0.0s ✔ Volume "druid1_middle_var"       Created                 0.0s ✔ Volume "druid1_router_var"       Created                 0.0s ✔ Volume "druid1_metadata_data"    Created                 0.0s ✔ Volume "druid1_coordinator_var"  Created                 0.0s ✔ Volume "druid1_broker_var"       Created                 0.0s ✔ Container postgres               Started                 2.4s ✔ Container zookeeper              Started                 2.4s ✔ Container coordinator            Started                 1.6s ✔ Container router                 Started                 2.5s ✔ Container broker                 Started                 2.3s ✔ Container historical             Started                 2.5s ✔ Container middlemanager          Started                 2.8s 
PS E:\dockerData\volume\druid1>

拉取镜像成功后很快就能拉起容器:

在这里插入图片描述

好家伙。。。还顺便把其它组件的端口也给暴露出来了。。。

在这里插入图片描述
在这里插入图片描述

于是还**白piao**到一个PG和Zookeeper!!!

验证

http://localhost:3012/unified-console.html#

在这里插入图片描述

灰常好,现在已经拥有了一个最新Apache Druid32.0.0!!!

转载请注明出处:https://lizhiyong.blog.csdn.net/article/details/145622903

在这里插入图片描述

http://www.lryc.cn/news/538391.html

相关文章:

  • mac 意外退出移动硬盘后再次插入移动硬盘不显示怎么办
  • 力扣动态规划-32【算法学习day.126】
  • 【算法进阶详解 第一节】树状数组
  • 【苍穹外卖】学习
  • Python常见面试题的详解8
  • Deepseek R1模型本地化部署与API实战指南:释放企业级AI生产力
  • node.js + html调用ChatGPTApi实现Ai网站demo(带源码)
  • sql语言语法的学习
  • 力扣 最长递增子序列
  • 【linux】在 Linux 服务器上部署 DeepSeek-r1:70b 并通过 Windows 远程可视化使用
  • visutal studio 2022使用qcustomplot基础教程
  • Linux:线程概念、理解、控制
  • Postman如何流畅使用DeepSeek
  • K8S下载离线安装包所需文件
  • 探索Hugging Face:开源AI社区的核心工具与应用实践
  • 【操作系统】深入理解Linux物理内存
  • npm 私服使用介绍
  • 安全筑基,智能赋能:BeeWorks IM引领企业协同新纪元
  • 水务+AI应用探索(一)| FastGPT+DeepSeek 本地部署
  • [JVM篇]垃圾回收器
  • SQL Server:查看当前连接数和最大连接数
  • DeepSeek应用——与PyCharm的配套使用
  • 【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】
  • 多模态基础模型训练笔记-第一篇InternVL-g
  • MyBatis:动态SQL高级标签使用方法指南
  • 使用grafana v11 建立k线(蜡烛图)仪表板
  • ubuntu 安装 Redis
  • 利用docker-compose一键创建并启动所有容器
  • mysql开启gtid并配置主从
  • redis sentinel模式 与 redis 分片集群 配置