当前位置: 首页 > news >正文

Retrieval-Augmented Generation for LargeLanguage Models: A Survey

标题:Retrieval-Augmented Generation for Large Language Models: A Survey

作者:Yunfan Gaoa , Yun Xiongb , Xinyu Gaob , Kangxiang Jiab , Jinliu Panb , Yuxi Bic , Yi Daia , Jiawei Suna , Meng Wangc , and Haofen Wang

1. By referencing external knowledge, RAG effectively reduces the problem of generating factually incorrect content. Its integration into LLMs has resulted in widespread adoption, establishing RAG as a key technology in advancing chatbots and enhancing the suitability of LLMs for real-world applications

2. The RAG research paradigm is continuously evolving, and we categorize it into three stages: Naive RAG, Advanced RAG, and Modular RAG

3. The Naive RAG:

Indexing starts with the cleaning and extraction of raw data

Retrieval. Upon receipt of a user query, the RAG system employs the same encoding model utilized during the indexing phase to transform the query into a vector representation.

Generation. The posed query and selected documents are synthesized into a coherent prompt to which a large language model is tasked with formulating a response.

4. 

Advanced RAG introduces specific improvements to overcome the limitations of Naive RAG. Focusing on enhancing retrieval quality, it employs pre-retrieval and post-retrieval strategies.

5. 

Pre-retrieval process. In this stage, the primary focus is on optimizing the indexing structure and the original query. The goal of optimizing indexing is to enhance the quality of the content being indexed.

Post-Retrieval Process. Once relevant context is retrieved, it’s crucial to integrate it effectively with the query

6. Innovations such as the Rewrite-Retrieve-Read [7]model leverage the LLM’s capabilities to refine retrieval queries through a rewriting module and a LM-feedback mechanism to update rewriting model

7. RAG is often compared with Fine-tuning (FT) and prompt engineering. Each method has distinct characteristics as illustrated in Figure 4.

8. In the context of RAG, it is crucial to efficiently retrieve relevant documents from the data source. There are several key issues involved, such as the retrieval source, retrieval granularity, pre-processing of the retrieval, and selection of the corresponding embedding model.

http://www.lryc.cn/news/537892.html

相关文章:

  • 2025年2月16日(numpy-deepseek)
  • C#windows窗体人脸识别
  • 【第11章:生成式AI与创意应用—11.1 文本生成与创意写作辅助的实现与优化】
  • 【Elasticsearch】通过运行时字段在查询阶段动态覆盖索引字段
  • 电解电容的参数指标
  • linux 内核编译报错 unknown assembler invoked
  • HTML,API,RestFul API基础
  • js 使用缓存判断在规定时间内显示一次弹框
  • 使用新版本golang项目中goyacc依赖问题的处理
  • 洛谷 P2574 XOR的艺术/CF242E XOR on Segment 题解
  • 包管理器-汇总介绍
  • mysql系列8—Innodb的undolog
  • 静默安装OGG for MySQL微服务版本,高效开展数据同步和迁移
  • 【Golang 面试题】每日 3 题(五十五)
  • PHP关键字入门指南:分类与功能全解析
  • 消息中间件深度剖析:以 RabbitMQ 和 Kafka 为核心
  • 【万字详细教程】Linux to go——装在移动硬盘里的Linux系统(Ubuntu22.04)制作流程;一口气解决系统安装引导文件迁移显卡驱动安装等问题
  • HCIA项目实践---OSPF的基本配置
  • Vue 自动配置表单 el-switch等不常用组件覆盖默认值问题
  • 零基础购买阿里云服务器,XShell连接云服务器
  • 【系统架构设计师】虚拟机体系结构风格
  • C语言中qsort函数使用技巧
  • WPF的Prism框架的使用
  • LeetCode每日精进:142.环形链表II
  • CPP集群聊天服务器开发实践(五):nginx负载均衡配置
  • easyexcel解析excel文件的时候报错
  • Android设备 网络安全检测
  • word分栏使得最后一页内容自动平衡
  • 完全免费稳定WebTerm网页版在线SSH连接,在线远程连接云服务器,可以控制背景,支持SFTP访问服务器文件。无需安装即可在线连接和管理服务器的SSH终端工具。支持跨平台设备。
  • 微信小程序医院挂号系统