当前位置: 首页 > news >正文

图像缩放的双线性插值实现方式

1、双线性插值概念

双线性插值是一种用于在二维网格上进行插值的方法,适用于图像处理、计算机图形学等领域。它通过利用四个邻近点的已知值,估算出任意点的值。双线性插值在两个方向(通常是水平和垂直)上分别进行线性插值,因此得名“双线性”。双线性插值是一种常用的图像缩放方法,它通过在四个最近邻像素之间进行线性插值来计算新的像素值。以下是双线性插值的详细步骤和公式。

双线性插值的步骤

假设我们有一个源图像 I(x, y),目标是将其缩放到一个新的尺寸 (new_width, new_height)。对于目标图像中的每一个像素 (xx, yy),我们需要找到其在源图像中的对应位置,并使用双线性插值计算该像素的值。

  1. 确定源图像中的坐标

    • 计算目标图像中每个像素 (xx, yy) 对应的源图像坐标 (x, y)
    • 使用缩放比例 xRatio = (src_width - 1) / (new_width - 1)yRatio = (src_height - 1) / (new_height - 1) 来计算源图像坐标。
    • x = floor(xx * xRatio)y = floor(yy * yRatio) 得到最接近的左上角像素坐标。
    • x_ly_l 分别是 xy 的整数部分,x_h = min(x_l + 1, src_width - 1)y_h = min(y_l + 1, src_height - 1) 是右下角的像素坐标。
  2. 计算权重

    • 计算小数部分 dx = xx * xRatio - x_ldy = yy * yRatio - y_l
    • 这些小数部分将用于线性插值。
  3. 双线性插值公式

    • 使用四个最近邻像素的值 I(x_l, y_l)I(x_h, y_l)I(x_l, y_h)I(x_h, y_h) 进行插值。
    • 首先在水平方向上进行线性插值:
      a = I ( x l , y l ) ⋅ ( 1 − d x ) + I ( x h , y l ) ⋅ d x a = I(x_l, y_l) \cdot (1 - dx) + I(x_h, y_l) \cdot dx a=I(xl,yl)(1dx)+I(xh,yl)dx b = I ( x l , y h ) ⋅ ( 1 − d x ) + I ( x h , y h ) ⋅ d x b = I(x_l, y_h) \cdot (1 - dx) + I(x_h, y_h) \cdot dx b=I(xl,yh)(1dx)+I(xh,yh)dx
    • 然后在垂直方向上进行线性插值:
      I ′ ( x x , y y ) = a ⋅ ( 1 − d y ) + b ⋅ d y I'(xx, yy) = a \cdot (1 - dy) + b \cdot dy I(xx,yy)=a(1dy)+bdy

2、双线性插值实现代码(NumPy,CV2)

2.1 Python代码

提供了3种实现方式:for-loopNumPy广播机制CV2库函数

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import time
import cv2#方式1:for-loop
def bilinear_resize(img, new_shape):img = np.array(img)height, width, depth = img.shapenew_height, new_width = new_shaperesult = np.zeros((new_height, new_width, depth))x_ratio = float(width - 1) / new_widthy_ratio = float(height - 1) / new_heightfor i in range(new_height):for j in range(new_width):x_l, y_l = int(j * x_ratio), int(i * y_ratio)x_h, y_h = min(x_l + 1, width - 1), min(y_l + 1, height - 1)x_weight = (j * x_ratio) - x_ly_weight = (i * y_ratio) - y_la = img[y_l, x_l] * (1 - x_weight) + img[y_l, x_h] * x_weightb = img[y_h, x_l] * (1 - x_weight) + img[y_h, x_h] * x_weightresult[i, j] = a * (1 - y_weight) + b * y_weightreturn Image.fromarray(np.uint8(result))#方式2:NumPy广播机制
def bilinear_resize_numpy(img, new_shape):img = np.array(img)height, width, depth = img.shapenew_height, new_width = new_shape# 计算缩放比例x_ratio = float(width - 1) / (new_width - 1) if new_width > 1 else 0y_ratio = float(height - 1) / (new_height - 1) if new_height > 1 else 0# 创建网格坐标x_grid = np.linspace(0, width - 1, new_width)y_grid = np.linspace(0, height - 1, new_height)# 获取每个新像素点在原图中的位置x_l = np.floor(x_grid).astype(int)y_l = np.floor(y_grid).astype(int)x_h = np.minimum(x_l + 1, width - 1)y_h = np.minimum(y_l + 1, height - 1)# 计算权重x_weight = x_grid[:, None] - x_l[:, None]y_weight = y_grid[:, None] - y_l[:, None]# 使用numpy索引获取四个邻近像素的值a = img[y_l[:, None], x_l].reshape(new_height, new_width, depth)b = img[y_l[:, None], x_h].reshape(new_height, new_width, depth)c = img[y_h[:, None], x_l].reshape(new_height, new_width, depth)d = img[y_h[:, None], x_h].reshape(new_height, new_width, depth)# 调整权重形状以匹配图像数据x_weight = x_weight[:, :, None]y_weight = y_weight[:, :, None]# 进行双线性插值ab = a * (1 - x_weight.transpose((1, 0, 2))) + b * x_weight.transpose((1, 0, 2))cd = c * (1 - x_weight.transpose((1, 0, 2))) + d * x_weight.transpose((1, 0, 2))result = ab * (1 - y_weight) + cd * y_weightreturn Image.fromarray(np.uint8(result))#方式3:CV2库函数
def bilinear_resize_cv2(img, new_shape):# 将PIL图像转换为numpy数组img_array = np.array(img)# 计算新的尺寸new_height, new_width = new_shape# 使用cv2.resize进行双线性插值start_time = time.time()resized_img = cv2.resize(img_array, (new_width, new_height), interpolation=cv2.INTER_LINEAR)processing_time = time.time() - start_timeprint(f"OpenCV processing time: {processing_time:.4f} seconds")# 将numpy数组转换回PIL图像并返回return Image.fromarray(resized_img)if __name__ == "__main__":# 加载图像img_path = 'image.jpg'original_img = Image.open(img_path)# 设置新的尺寸# new_shape = (original_img.size[0] // 2, original_img.size[1] // 2)new_shape = (640,640)# 使用for循环遍历处理并计时start_time = time.time()resized_img_for_loop= bilinear_resize(original_img, new_shape)numpy_time = time.time() - start_timeprint(f"for-loop  processing time: {numpy_time:.4f} seconds")# 使用NumPy广播机制处理并计时start_time = time.time()resized_img_numpy= bilinear_resize_numpy(original_img, new_shape)numpy_time = time.time() - start_timeprint(f"NumPy processing time: {numpy_time:.4f} seconds")# 使用OpenCV处理并计时resized_img_cv2 = bilinear_resize_cv2(original_img, new_shape)# 显示结果(可选)# 创建一个包含三个子图的图形,并设置布局fig, axes = plt.subplots(1, 3, figsize=(15, 5))# 显示第一张图像axes[0].imshow(resized_img_for_loop)axes[0].set_title("Resized with NumPy")axes[0].axis('off')# 显示第二张图像axes[1].imshow(resized_img_numpy)axes[1].set_title("Resized with NumPy (New)")axes[1].axis('off')# 显示第三张图像axes[2].imshow(resized_img_cv2)axes[2].set_title("Resized with OpenCV")axes[2].axis('off')# 调整布局以防止重叠plt.tight_layout()# 显示图像plt.show()

2.2 运行结果

运行结果耗时对比:

for-loop processing time: 3.0354 seconds
NumPy processing time: 0.0666 seconds
OpenCV processing time: 0.0035 seconds

在这里插入图片描述
可以看出OpenCV处理速度最快。


  • 另外本想尝试支持OpenCLpyopencl的加速处理,但是报了点错就没有放代码。

http://www.lryc.cn/news/537594.html

相关文章:

  • 深入剖析 Vue 的响应式原理:构建高效 Web 应用的基石
  • 40.日常算法
  • CAS单点登录(第7版)11.SSO SLO
  • Bob the Canadian
  • CAS单点登录(第7版)16.模仿
  • 预留:大数据Hadoop之——部署hadoop+hive+Mysql环境(Linux)
  • RabbitMQ介绍以及基本使用
  • C++演示中介模式
  • Vue的简单入门 一
  • 【免费送书活动】《MySQL 9从入门到性能优化(视频教学版)》
  • export default与export区别
  • 最佳的出牌方法
  • Kotlin 2.1.0 入门教程(二十一)数据类
  • 30天开发操作系统 第 20 天 -- API
  • WEB安全--SQL注入--floor报错注入
  • 【java面向对象的三大特性】封装、继承和多态
  • Hermite 插值
  • 【推理llm论文精度】DeepSeek-R1:强化学习驱动LLM推理能力飞跃
  • arm linux下的中断处理过程。
  • C语言:指针详解
  • github用户名密码登陆失效了
  • 【删除tomcat默认管理控制台】
  • 动态库与静态库:深入解析与应用
  • 【鱼眼镜头12】Scaramuzza的鱼眼相机模型实操,不依赖于具体的相机几何结构,直接从图像数据出发,因此更具灵活性。
  • LVS 负载均衡集群(NAT模式)
  • MATLAB中的APPdesigner绘制多图问题解析?与逻辑值转成十进制
  • 9种慢慢被淘汰的编程语言...
  • vue知识点5
  • rdiff-backup备份
  • UE_C++ —— Metadata Specifiers