当前位置: 首页 > news >正文

稠密架构和稀疏架构

稠密架构和稀疏架构

flyfish

稠密架构
  • 参数使用方面:稠密架构中的大部分参数在每次计算时都会被使用。也就是说,对于输入的每一个样本,模型的所有或大部分参数都会参与到计算过程中。
  • 计算特点:计算密集,需要对大量的参数进行乘法和加法运算,通常会消耗较多的计算资源和内存。
稀疏架构
  • 参数使用方面:稀疏架构中只有一小部分参数会在每次计算时被激活和使用。模型会根据输入的具体情况,动态地选择使用哪些参数进行计算。
  • 计算特点:计算相对稀疏,避免了不必要的计算,从而可以减少计算量和内存占用,提高计算效率。

Transformer架构

  • 类型:Transformer属于稠密架构。
  • 原因
    • 参数使用:在Transformer中,对于每个输入序列,多头注意力机制和前馈神经网络层中的所有参数都会参与计算。例如,在多头注意力机制里,输入序列的每个位置都会与其他所有位置进行注意力计算,涉及到大量的矩阵乘法和加法运算,所有的注意力头和对应的权重矩阵都会被使用。
    • 计算特点:Transformer的计算量随着输入序列长度的增加而显著增加,是一种计算密集型的架构。在处理长序列时,需要大量的计算资源和内存来存储中间结果。

DeepseekV2MoE架构

  • 类型:DeepseekV2MoE属于稀疏架构。
  • 原因
    • 参数使用:DeepseekV2MoE采用了混合专家(Mixture - of - Experts, MoE)架构,其中包含多个专家网络(experts)和一个门控网络(MoEGate)。门控网络会根据输入数据的特征,为每个专家网络计算一个权重,然后根据这些权重动态地选择一部分专家网络来处理输入。也就是说,在每次计算时,只有被选中的专家网络的参数会参与到计算中,而其他专家网络的参数则不会被使用,实现了参数的稀疏使用。
    • 计算特点:由于只有部分专家网络参与计算,避免了对所有专家网络进行不必要的计算,从而减少了计算量和内存占用。特别是在处理大规模数据时,这种稀疏计算的方式可以显著提高计算效率。例如,对于某些特定的输入,门控网络可能只选择少数几个专家网络进行处理,而其他专家网络则处于空闲状态。

使用混合专家(Mixture of Experts, MoE)的例子

自然语言处理领域

1. Switch Transformer
  • 提出者:由谷歌于2021年提出。
  • 架构特点:将MoE架构引入到Transformer模型中,在Transformer的前馈网络层使用多个专家网络。门控网络会根据输入动态地将输入序列的不同部分路由到不同的专家网络进行处理,从而显著减少了计算量和内存占用,同时提高了模型的性能。
  • 应用效果:在大规模语言模型训练中展现出了高效性,能够在相同计算资源下处理更大规模的数据和更复杂的任务。
2. GShard
  • 提出者:也是谷歌的研究成果。
  • 架构特点:同样基于Transformer架构,采用了MoE技术。它通过一种名为“GShard”的算法来实现专家网络的高效并行化和负载均衡,能够在分布式环境下进行大规模训练。
  • 应用效果:在处理长序列文本和大规模语料库时表现出色,可有效提升模型的训练速度和性能。
3. ST-MoE
  • 提出者:字节跳动提出。
  • 架构特点:对传统的MoE进行了改进,在门控机制和专家网络的设计上进行了优化。它引入了一种自适应的路由策略,能够根据输入的动态特性更灵活地分配专家网络,同时采用了更高效的稀疏计算方法。
  • 应用效果:在多个自然语言处理任务中取得了较好的效果,并且在计算效率上有显著提升。

计算机视觉领域

1. ViT - MoE
  • 架构特点:将MoE架构与视觉Transformer(ViT)相结合。在ViT的多头注意力机制或前馈网络层引入专家网络,门控网络根据图像的特征将不同的图像区域或特征路由到合适的专家网络进行处理。
  • 应用效果:能够更好地捕捉图像中的复杂模式和特征,提高图像分类、目标检测等任务的性能。

强化学习领域

1. MoE - based Policy Networks
  • 应用方式:在强化学习的策略网络中使用MoE架构。不同的专家网络可以学习到不同的策略,门控网络根据当前的环境状态选择合适的专家网络生成动作,从而提高智能体在复杂环境中的决策能力。
  • 应用效果:在一些复杂的游戏和机器人控制任务中,基于MoE的策略网络能够更快地学习到有效的策略,提升智能体的性能。
http://www.lryc.cn/news/535835.html

相关文章:

  • LeetCode --- 436周赛
  • 用easyExcel如何实现?
  • 从 X86 到 ARM :工控机迁移中的核心问题剖析
  • 大模型DeepSeek-R1学习
  • 【STM32】H743的以太网MAC控制器的一个特殊功能
  • 关于“i18n“在vue中的使用
  • 前缀树算法篇:前缀信息的巧妙获取
  • DVSI使用SenseGlove为开发虚拟现实场景技能培训
  • VSCode + Continue 实现AI编程助理
  • 【PHP的static】
  • 考研操作系统----操作系统的概念定义功能和目标(仅仅作为王道哔站课程讲义作用)
  • 从360度全景照片到高质量3D场景:介绍SC-Omnigs 3D重建系统
  • 前沿技术新趋势:值得关注的创新发展
  • 算法跟练第十一弹——二叉树
  • 机器学习(李宏毅)——BERT
  • 新数据结构(7)——Object
  • 云计算基础
  • 利用kali linux 进行自动化渗透测试
  • 【Vue中BUG解决】npm error path git
  • GPT-4o微调SFT及强化学习DPO数据集构建
  • element-plus 解决el-dialog背后的页面滚动问题,及其内容有下拉框出现错位问题
  • MT6835 21位 磁编码器 SPI 平台无关通用驱动框架 STM32
  • vue REF 和 Reactive区别、特点、优势
  • Elastic Cloud Serverless 现已在 Microsoft Azure 上提供技术预览版
  • Spring Boot + MyBatis Field ‘xxx‘ doesn‘t have a default value 问题排查与解决
  • kafka的架构和工作原理
  • 游戏引擎学习第100天
  • 机器学习:朴素贝叶斯分类器
  • 打开Visual Studio Code的时候发现未检测到适用于linux的windows子系统,那么该问题要如何解决?
  • 力扣24题——两两交换链表中节点