当前位置: 首页 > news >正文

b站——《【强化学习】一小时完全入门》学习笔记及代码(1-3 多臂老虎机)

问题陈述

我们有两个多臂老虎机(Multi-Armed Bandit),分别称为左边的老虎机右边的老虎机。每个老虎机的奖励服从不同的正态分布:

  • 左边的老虎机:奖励服从均值为 500,标准差为 50 的正态分布,即 N(500,50)N(500,50)。

  • 右边的老虎机:奖励服从均值为 550,标准差为 100 的正态分布,即 N(550,100)N(550,100)。

我们的目标是使用 ε-greedy 强化学习算法(ε=0.1,初始值为 998)来估计这两个老虎机的奖励期望值。具体来说,我们需要通过多次尝试(拉动手臂)来逐步更新对每个老虎机奖励的估计,最终找到两个老虎机的奖励期望值。

问题分解

  1. 目标

    • 使用 ε-greedy 算法估计两个老虎机的奖励期望值。

    • 通过多次尝试,逐步更新对每个老虎机奖励的估计。

  2. ε-greedy 算法

    • ε=0.1:表示有 10% 的概率进行随机探索(随机选择一个老虎机),90% 的概率进行利用(选择当前估计奖励最高的老虎机)。

    • 初始值=998:表示每个老虎机的初始奖励估计值为 998。

  3. 奖励分布

    • 左边的老虎机:N(500,50)N(500,50)

    • 右边的老虎机:N(550,100)N(550,100)

  4. 输出

    • 经过多次尝试后,输出两个老虎机的奖励期望值的估计结果

    • 通过运行代码,我们可以得到一个图表,显示两个老虎机奖励期望估计值随着时间的变化情况。随着拉动次数的增加,两个估计值应该逐渐接近它们各自的真实奖励期望值(500 和 550)。

import numpy as np
import matplotlib.pyplot as plt# 参数初始化
epsilon = 0.1  # ε-greedy算法中的ε
Q1 = 998  # 左边老虎机的奖励期望估计
Q2 = 998  # 右边老虎机的奖励期望估计
n1 = 0  # 左边老虎机的拉动次数
n2 = 0  # 右边老虎机的拉动次数
num_plays = 10000  # 总共拉动的次数# 奖励的真实分布
mu1, sigma1 = 500, 50  # 左边老虎机的真实奖励分布(均值,标准差)
mu2, sigma2 = 550, 100  # 右边老虎机的真实奖励分布(均值,标准差)# 用于存储结果
Q1_estimates = []
Q2_estimates = []# ε-greedy策略的实验
for t in range(num_plays):# 根据ε-greedy策略选择一个老虎机if np.random.random() < epsilon:action = np.random.choice([1, 2])  # 随机选择左或右else:action = 1 if Q1 > Q2 else 2  # 选择当前估计奖励最大的老虎机if action == 1:reward = np.random.normal(mu1, sigma1)  # 从左边老虎机获得奖励n1 += 1Q1 += (reward - Q1) / n1  # 更新左边老虎机的奖励期望估计Q1_estimates.append(Q1)else:reward = np.random.normal(mu2, sigma2)  # 从右边老虎机获得奖励n2 += 1Q2 += (reward - Q2) / n2  # 更新右边老虎机的奖励期望估计Q2_estimates.append(Q2)# 最终的奖励期望估计
print(f"最终左边老虎机的奖励期望估计: {Q1}")
print(f"最终右边老虎机的奖励期望估计: {Q2}")# 绘图
plt.figure(figsize=(12, 6))# 绘制左边老虎机奖励期望估计的变化
plt.plot(Q1_estimates, label="Left Slot Machine (Q1)", color="blue")# 绘制右边老虎机奖励期望估计的变化
plt.plot(Q2_estimates, label="Right Slot Machine (Q2)", color="red")# 绘制真实奖励期望值的参考线
plt.axhline(y=mu1, color="blue", linestyle="--", label="True Q1 (500)")
plt.axhline(y=mu2, color="red", linestyle="--", label="True Q2 (550)")# 图表设置
plt.title("Reward Estimation in ε-greedy Slot Machine Experiment")
plt.xlabel("Number of Plays")
plt.ylabel("Estimated Reward")
plt.legend(loc="best")
plt.grid(True)# 显示图表
plt.show()

显示结果如图:

http://www.lryc.cn/news/535183.html

相关文章:

  • 【Mac排错】ls: command not found 终端命令失效的解决办法
  • 探秘Hugging Face与DeepSeek:AI开源世界的闪耀双子星
  • SkyWalking 10.1.0 实战:从零构建全链路监控,解锁微服务性能优化新境界
  • 本地部署DeepSeek-R1(Mac版)
  • 网易易盾接入DeepSeek,数字内容安全“智”理能力全面升级
  • apachePoi中XSSFClientAnchor图片坐标简述;填充多张图片
  • Java、Go、Rust、Node.js 的内存占比及优缺点分析
  • C++智能指针的使用
  • 计算机毕业设计——Springboot的社区维修平台旅游管理
  • MySQL ALTER 命令详解
  • 02、QLExpress从入门到放弃,相关API和文档
  • Mp4视频播放机无法播放视频-批量修改视频分辨率(帧宽、帧高)
  • deepseek大模型集成到idea
  • AI基础 -- AI学习路径图
  • 在 Visual Studio Code 与微信开发者工具中调试使用 emscripten 基于 C 生成的 WASM 代码
  • elasticsearch实战应用从入门到高效使用java集成es快速上手
  • 【OneAPI】通过网页预渲染让搜索引擎收录网页
  • 【网络安全.渗透测试】Cobalt strike(CS)工具使用说明
  • 港中文腾讯提出可穿戴3D资产生成方法BAG,可自动生成服装和配饰等3D资产如,并适应特定的人体模型。
  • 【C语言标准库函数】标准输入输出函数详解[4]:二进制文件读写函数
  • Python:凯撒密码
  • C++引用深度详解
  • C++ Primer 语句作用域
  • github - 使用
  • 内网ip网段记录
  • k8s部署logstash
  • EF Core中实现值对象
  • 【分布式理论9】分布式协同:分布式系统进程互斥与互斥算法
  • 木材表面缺陷检测数据集,支持YOLO+COCO JSON+PASICAL VOC XML+DARKNET格式标注信息,平均正确识别率95.0%
  • Leetcodehot 力扣热题100 二叉搜索树中第 K 小的元素