当前位置: 首页 > news >正文

多项式插值(数值计算方法)Matlab实现

多项式插值(数值计算方法)Matlab实现

  • 一. 原理介绍
  • 二. 程序设计
    • 1. 构建矩阵
    • 2. 求解矩阵方程
    • 3. 作出多项式函数
    • 4. 绘制插值曲线
    • 5. 完整代码
  • 三. 图例

一. 原理介绍

  1. 关于插值的定义及基本原理可以参照如下索引
    插值原理(数值计算方法)
  2. 前面已经介绍过插值原理的唯一性表述,对于分立的数据点,方程组:

P ( x 0 ) = y 0 ⇒ a 0 + a 1 x 0 + a 2 x 0 2 + ⋯ + a n x 0 n = y 0 , P ( x 1 ) = y 1 ⇒ a 0 + a 1 x 1 + a 2 x 1 2 + ⋯ + a n x 1 n = y 1 , ⋮ P ( x n ) = y n ⇒ a 0 + a 1 x n + a 2 x n 2 + ⋯ + a n x n n = y n . \begin{aligned} & P(x_0) = y_0 \quad \Rightarrow \quad a_0 + a_1 x_0 + a_2 x_0^2 + \cdots + a_n x_0^n = y_0, \\ & P(x_1) = y_1 \quad \Rightarrow \quad a_0 + a_1 x_1 + a_2 x_1^2 + \cdots + a_n x_1^n = y_1, \\ & \quad \vdots \\ & P(x_n) = y_n \quad \Rightarrow \quad a_0 + a_1 x_n + a_2 x_n^2 + \cdots + a_n x_n^n = y_n. \end{aligned} P(x0)=y0a0+a1x0+a2x02++anx0n=y0,P(x1)=y1a0+a1x1+a2x12++anx1n=y1,P(xn)=yna0+a1xn+a2xn2++anxnn=yn.

恒有解,多项式插值的目标即为在这一过程中求解系数 a 0 、 a 1 、 . . . 、 a n ⟺ [ a 0 a 1 a 2 ⋮ a n ] a_0、a_1、...、a_n\Longleftrightarrow\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} a0a1...an a0a1a2an

  1. 即解方程组:
    [ 1 x 0 x 0 2 ⋯ x 0 n 1 x 1 x 1 2 ⋯ x 1 n ⋮ ⋮ ⋮ ⋱ ⋮ 1 x n x n 2 ⋯ x n n ] [ a 0 a 1 a 2 ⋮ a n ] = [ y 0 y 1 y 2 ⋮ y n ] . \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}= \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}. 111x0x1xnx02x12xn2x0nx1nxnn a0a1a2an = y0y1y2yn .

关于该方程组的解法在线性代数中有多种,这里主要提及两种:
①高斯消元法
②克莱姆法则
程序设计过程中一般有封装好的库函数,如果为了考虑减少库依赖和提高程序运行效率及占用可能会用到上述方法(这里就不详细展开了)


二. 程序设计

1. 构建矩阵

% 构造Vandermonde矩阵A
A = zeros(n, n);
for i = 1:nfor j = 1:nA(i, j) = x_data(i)^(j-1);  % Vandermonde矩阵end
end

Ⅰ 构建一个 ( n × n ) (n \times n) (n×n)的矩阵 A 来描述多项式矩阵:
[ 1 x 0 x 0 2 ⋯ x 0 n 1 x 1 x 1 2 ⋯ x 1 n ⋮ ⋮ ⋮ ⋱ ⋮ 1 x n x n 2 ⋯ x n n ] \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} 111x0x1xnx02x12xn2x0nx1nxnn

其中:
A [ i ] [ j ] = x i j − 1 A[i][j] = x_{i}^{j-1} A[i][j]=xij1

式中第一列的1是通过 x i 0 x_{i}^{0} xi0得到的。

y_data = data(:, 2);

Ⅱ 构建系数矩阵 B,即原始数据对应的 y 值:

2. 求解矩阵方程

% 解线性方程组 A * coefficients = y_data
coefficients = A \ y_data;

注释:该部分通过反斜杠运算符 \ 计算线性方程组 A ⋅ c o e f f i c i e n t s = y d a t a A ⋅ coefficients = y_data Acoefficients=ydata的解。
①当方程组超定时(方程数大于未知数个数),返回最小二乘解,即最小化残差平方和 ∥ A ⋅ c o e f f i c i e n t s − y d a t a ∥ 2 ∥ A ⋅ coefficients − y_{data} ∥^2 Acoefficientsydata2
②当方程组适定时,返回精确解
③当方程组欠定时返回最小范数解

求解出矩阵形式形如
6.0000
-7.8333
4.5000
-0.6667
从上至下为最低次项到最高次项系数

3. 作出多项式函数

% 生成插值多项式的x和y值
x_vals = linspace(min(x_data) - 1, max(x_data) + 1, 500);
y_vals = polyval(flip(coefficients), x_vals);  % 计算插值多项式的y值

注释: 前面注释提到coefficients数组中的系数对应从左到右为最低到最高次项系数,而函数polyval()要求输入具有逆序的项系数:flip函数将系数的顺序反转,将变为从最高次到最低次项系数
y_vals = polyval(flip(coefficients), x_vals) 将计算每一个 x_val 对应的多项式值,并返回一个 y_vals 数组,包含每个 x_val 对应的 y 值。

4. 绘制插值曲线

% 绘制插值曲线
figure;
plot(x_vals, y_vals, 'b-', 'DisplayName', '插值曲线');
hold on;
scatter(x_data, y_data, 'ro', 'DisplayName', '数据点');
title('插值多项式');
xlabel('X轴');
ylabel('Y轴');
legend;
grid on;

5. 完整代码

% 输入数据 (x, y)
data = [1,22,33,54,4
];% 提取x和y值
x_data = data(:, 1);
y_data = data(:, 2);
n = length(data);% 构造Vandermonde矩阵A
A = zeros(n, n);
for i = 1:nfor j = 1:nA(i, j) = x_data(i)^(j-1);  % Vandermonde矩阵end
end% 解线性方程组 A * coefficients = y_data
coefficients = A \ y_data;% 输出插值多项式的系数
disp('插值多项式的系数:');
disp(coefficients);% 生成插值多项式的x和y值
x_vals = linspace(min(x_data) - 1, max(x_data) + 1, 500);
y_vals = polyval(flip(coefficients), x_vals);  % 计算插值多项式的y值% 绘制插值曲线
figure;
plot(x_vals, y_vals, 'b-', 'DisplayName', '插值曲线');
hold on;
scatter(x_data, y_data, 'ro', 'DisplayName', '数据点');
title('插值多项式');
xlabel('X轴');
ylabel('Y轴');
legend;
grid on;

三. 图例

这要求我们的输入数据都具有上述形式:

data = [x_1, y_1x_2, y_2x_3, y_3x_4, y_4...]

最后我们插值一组随机生成的测试数据

data = [7.264384, 3.9312921.943873, 6.2189038.384019, 2.5841035.672210, 9.0326740.294315, 4.7260186.129531, 7.9128469.516347, 1.4782643.824679, 5.596042
]

实际应用时应避免数据点过多导致的多项式次数过高


希望能够帮到迷途之中的你,知识有限,如有学术错误请及时指正,感谢大家的阅读

(^^)/▽ ▽\(^^)
http://www.lryc.cn/news/535092.html

相关文章:

  • [AI]Mac本地部署Deepseek R1模型 — — 保姆级教程
  • android手机本地部署deepseek1.5B
  • 理解UML中的四种关系:依赖、关联、泛化和实现
  • 机器学习 - 词袋模型(Bag of Words)实现文本情感分类的详细示例
  • Kimi k1.5: Scaling Reinforcement Learning with LLMs
  • 如何评估云原生GenAI应用开发中的安全风险(下)
  • ASP.NET Core程序的部署
  • 《深度LSTM vs 普通LSTM:训练与效果的深度剖析》
  • Spring依赖注入方式
  • Photoshop自定义键盘快捷键
  • 解决VsCode的 Vetur 插件has no default export Vetur问题
  • 关于浏览器缓存的思考
  • Vue3+element-plus表单重置resetFields方法失效问题
  • 解释和对比“application/octet-stream“与“application/x-protobuf“
  • 1158:求1+2+3+...
  • 前端实现在PDF上添加标注(1)
  • 螺旋矩阵 II
  • 【愚公系列】《Python网络爬虫从入门到精通》001-初识网络爬虫
  • 【linux学习指南】模拟线程封装与智能指针shared_ptr
  • 10、Python面试题解析:解释reduce函数的工作原理
  • 【含开题报告+文档+PPT+源码】学术研究合作与科研项目管理应用的J2EE实施
  • MySQL主从复制过程,延迟高,解决应对策略
  • Deepseek模拟阿里面试——数据库
  • 大数据学习之SparkStreaming、PB级百战出行网约车项目一
  • Java 高频面试闯关秘籍
  • 边缘计算网关驱动智慧煤矿智能升级——实时预警、低延时决策与数字孪生护航矿山安全高效运营
  • Oracle认证大师(OCM)学习计划书
  • 力扣 单词拆分
  • 如何在Linux中设置定时任务(cron)
  • C# ASP.NET核心特性介绍