当前位置: 首页 > news >正文

机器学习在癌症分子亚型分类中的应用

学习笔记:机器学习在癌症分子亚型分类中的应用——Cancer Cell 研究解析


在这里插入图片描述

1. 文章基本信息

  • 标题:Classification of non-TCGA cancer samples to TCGA molecular subtypes using machine learning
  • 发表期刊:Cancer Cell
  • 发表时间:2025 年,第 53 卷,第 2 期
  • 研究目标
    • 开发机器学习分类器,用于将非 TCGA 样本映射到TCGA 定义的分子亚型
    • 支持多组学数据整合(mRNA、DNA 甲基化、CNV、突变、miRNA),提高分类准确度。
    • 提供标准化工具(Docker 容器化),使研究和临床应用更便捷。

2. 文章的主要行文思路

(1) 引言(Introduction)

  • 介绍癌症传统分类方法(基于组织学和解剖学分类)的局限性。
  • 介绍 TCGA 数据集在癌症亚型研究中的重要性。
  • 说明当前分子亚型分类方法在非 TCGA 样本上的应用挑战。
  • 提出研究目标:使用机器学习方法开发分类器,将非 TCGA 样本归类到 TCGA 定义的亚型

(2) 方法(Methods)

  • 数据来源:使用 TCGA 的多组学数据,包括 mRNA、DNA 甲基化、CNV、miRNA、突变数据。
  • 机器学习方法
    • 使用五种 ML 方法(AKLIMATE、CloudForest、SKGrid、JADBio、subSCOPE)。
    • 训练 8,791 个 TCGA 样本,涵盖 26 种癌症队列和 106 个分子亚型。
    • 使用交叉验证评估模型性能,最终选出 737 个最优分类器。
  • 外部验证
    • 采用 METABRIC 和 AURORA 乳腺癌数据集,测试模型的泛化能力。

在这里插入图片描述

(3) 结果(Results)

  • 分类模型构建与性能评估

    • 统计不同数据类型对分类的贡献。
    • 发现 mRNA 在大多数癌症亚型分类中起主导作用。
      在这里插入图片描述
  • 外部数据集验证

    • 评估不同 ML 方法在不同测序平台(RNA-seq vs. 微阵列)上的稳健性。
  • 模型泛化能力

    • 发现 70 个样本足以预测分类器的最终性能。
    • 研究不同癌症亚型对单一数据类型的依赖程度。

(4) 讨论(Discussion)

  • TCGA 亚型分类的临床应用潜力
    • 预测新样本时,可提供标准化的癌症分子亚型信息。
    • 未来可用于开发简化的癌症检测面板。

在这里插入图片描述

  • 研究局限性
    • TCGA 数据可能未涵盖所有癌症亚型。
    • 不同测序平台可能影响模型泛化能力。

(5) 结论(Conclusion)

  • 研究提供了一个通用的分类框架,可用于非 TCGA 样本的 TCGA 亚型分类
  • 公开 737 个高性能分类器,可用于癌症检测和精准医学研究

3. 文章的主要贡献

(1) 机器学习驱动的癌症分型

  • 使用 5 种机器学习方法 训练 TCGA 数据:
    • AKLIMATE
    • CloudForest
    • SKGrid
    • JADBio
    • subSCOPE
  • 训练 412,585 个分类模型,最终筛选出 737 个最优模型
  • 提供 Docker 版本,保证可复现性和易用性

(2) 多组学数据整合

  • 研究分析了不同数据类型的贡献
    • mRNA 对大多数癌症亚型分类最关键。
    • DNA 甲基化 在 LGG、GBM 等脑肿瘤分类中尤为重要。
    • 突变数据(Mutations) 适用于黑色素瘤(SKCM)。
    • 整合多种组学数据可提高分类准确度

(3) 临床应用价值

  • 提供 TCGA 亚型分类,提高癌症精准医学能力
    • 不同 TCGA 亚型的患者具有不同的预后和治疗策略
    • 例如:CMS1 结直肠癌(高 MSI-H)对 PD-1 免疫治疗敏感,而 CMS4 免疫排斥明显。
  • 帮助医生和研究人员在新数据集中分类样本,指导精准治疗。

(4) 公开可用的工具

  • 提供 Docker 容器,简化安装和使用
  • GitHub 代码公开,提高可复现性

https://github.com/NCICCGPO/gdan-tmp-models


3. 作者的主要单位

单位机构类型研究重点是否与临床相关
Oregon Health & Science University (OHSU)医学中心癌症基因组学、精准医学✅ 高度相关
University of California, San Francisco (UCSF)医学中心肿瘤学、精准医学✅ 高度相关
Dana-Farber Cancer Institute (DFCI)癌症中心肿瘤学、临床研究✅ 高度相关
MD Anderson Cancer Center (UTMDACC)癌症医院癌症治疗、精准医学✅ 高度相关
National Cancer Institute (NCI)政府研究机构癌症基因组、精准医学✅ 高度相关
The Broad Institute (MIT & Harvard)研究机构癌症基因组、药物开发✅ 高度相关
University of California, Santa Cruz (UCSC)大学计算生物学、生物信息学❌ 主要是计算研究
King Abdullah University of Science and Technology (KAUST)大学计算机科学、机器学习❌ 主要是算法,不直接涉及临床

📌 结论

  • 该研究团队涵盖了癌症精准医学、基因组学、计算生物学、机器学习等多个领域,保证了该研究的高临床相关性和计算分析的前沿性

4. 如何使用 Docker 进行数据处理

(1) 安装 Docker

首先,确保服务器已安装 Docker:

docker --version  # 确认安装

如果未安装,可以运行以下命令安装:

sudo apt update
sudo apt install docker.io -y
sudo systemctl start docker
sudo systemctl enable docker

(2) 克隆 GitHub 仓库

git clone https://github.com/NCICCGPO/gdan-tmp-models.git
cd gdan-tmp-models

(3) 拉取 Docker 镜像

docker pull nciccpo/gdan-tmp-aklimate:latest
docker pull nciccpo/gdan-tmp-cloudforest:latest
docker pull nciccpo/gdan-tmp-skgrid:latest
docker pull nciccpo/gdan-tmp-jadbio:latest
docker pull nciccpo/gdan-tmp-subscope:latest

(4) 准备输入数据

mkdir -p ~/gdan-input
mkdir -p ~/gdan-config

将**RNA-seq 表达数据(FPKM/TPM)**放入 ~/gdan-input/ 目录,并创建 YAML 配置文件 ~/gdan-config/config.yml

model: aklimate
input_data:mRNA: /data/mRNA_expression.csv
output:results: /data/prediction_results.csv

(5) 运行 Docker 进行 TCGA 亚型预测

docker run --rm --cpus=64 \-v ~/gdan-input:/data \-v ~/gdan-config:/config \nciccpo/gdan-tmp-aklimate:latest /config/config.yml

📌 参数解释

  • --cpus=64:使用 64 核 CPU(可根据服务器性能调整)。
  • -v ~/gdan-input:/data:映射输入数据目录到 /data
  • -v ~/gdan-config:/config:映射 YAML 配置文件目录到 /config

(6) 查看预测结果

ls ~/gdan-input
cat ~/gdan-input/prediction_results.txt

或者:

import pandas as pd
df = pd.read_csv("~/gdan-input/prediction_results.csv")
print(df.head())

5. 结果解读

示例结果:

Sample_ID    Predicted_TCGA_Subtype    Confidence_Score
Sample_001   BRCA_LuminalA             0.95
Sample_002   LGG_IDH_Mutant             0.87
Sample_003   SKCM_BRAF_Mutant           0.92

📌 解读

  • Predicted_TCGA_Subtype:模型预测的 TCGA 亚型
  • Confidence_Score(0-1):置信度,越高表示分类越可靠
  • 如果置信度低(如 <0.7),说明该样本可能更偏向其他亚型或需要额外数据支持(如 DNA 甲基化)。

6. 结论

该研究基于 TCGA 数据,提供了精准的癌症亚型分类工具
支持 RNA-seq(mRNA)数据,适用于临床研究和精准医学
使用 Docker 容器化,保证可复现性,提供 737 个高性能分类器
有助于个性化治疗,如免疫治疗和靶向治疗策略的选择

📌 下一步

  • 尝试用自己的 RNA-seq 数据跑一次分析
  • 如果分类结果置信度较低,可考虑添加 DNA 甲基化或突变数据
  • 如有问题,可以查看 Docker 日志:
    docker logs <CONTAINER_ID>
    
http://www.lryc.cn/news/534679.html

相关文章:

  • Ansible自动化部署K8s集群一 Ansible的基础使用实战
  • ZooKeeper Watcher 机制详解:从注册到回调的全过程
  • flutter_tools/gradle Unsupported class file major version 65 问题解决
  • C++设计模式 - 模板模式
  • mysql查缺补漏
  • 跨越边界,大模型如何助推科技与社会的完美结合?
  • 哪吒闹海!SCI算法+分解组合+四模型原创对比首发!SGMD-FATA-Transformer-LSTM多变量时序预测
  • 前端【技术方案】浏览器兼容问题(含解决方案、CSS Hacks、条件注释、特性检测、Polyfill 等)
  • 荣耀手机Magic3系列、Magic4系列、Magic5系列、Magic6系列、Magic7系列详情对比以及最新二手价格预测
  • 后盾人JS -- 模块化开发
  • CNN卷积神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)
  • 深入 JVM 虚拟机:字符串常量池演变与 intern() 方法工作原理解析
  • 单向/双向,单层/多层RNN输入输出维度问题
  • chromium-mojo
  • ZooKeeper 的典型应用场景:从概念到实践
  • 缓存组件<keep-alive>
  • YouBIP 项目
  • react概览webpack基础
  • DeepSeek 助力 Vue 开发:打造丝滑的步骤条
  • STM32的HAL库开发---高级定时器---互补输出带死区实验
  • Vue07
  • 【CXX-Qt】2 CXX-Qt #[cxx_qt::bridge] 宏指南
  • 鸿蒙接入支付宝SDK后模拟器无法运行,报错error: install parse native so failed.
  • 局域网使用Ollama(Linux)
  • Deepseek系列从v3到R易背面经版
  • Redis深入学习
  • 《从入门到精通:蓝桥杯编程大赛知识点全攻略》(十一)-回文日期、移动距离、日期问题
  • 在Uniapp中使用阿里云OSS插件实现文件上传
  • 9 数据流图
  • IDEA查看项目依赖包及其版本