当前位置: 首页 > news >正文

【机器学习】数据预处理之数据归一化

数据预处理之数据归一化

  • 一、摘要
  • 二、数据归一化概念
  • 三、数据归一化实现方法
    • 3.1 最值归一化方法
    • 3.2 均值方差归一化方法

一、摘要

本文主要讲述了数据归一化(Feature Scaling)的重要性及其方法。首先通过肿瘤大小和发现时间的例子,说明了不同量纲特征在距离计算中可能导致偏差,从而引出数据归一化的必要性。接着,介绍了最值归一化(Normalization)的概念和方法,即将数据映射到0-1之间的尺度,并指出其适用于分布有明显边界的情况。最后,还指出了最值归一化的一个缺点,即受异常值影响较大。

二、数据归一化概念

  1. 归一化是指一种简化计算的方式,将数据经过处理之后限定到一定的范围之内,一般都会将数据限定在[0,1]。数据归一化可以加快算法的收敛速度,而且在后续的数据处理上也会比较方便。
  2. 数据归一化的重要性
    1. 数据归一化是机器学习中非常重要的一步,也称为特征缩放
    2. 归一化的目的是使数据在不同特征之间具有相同的尺度,以便更好地进行分类或其他机器学习任务。
  3. 另外,归一化算法是一种去量纲的行为,关于量纲对于计算的影响可以举这样一个例子:使用肿瘤大小(厘米)和发现时间(天)作为特征进行分类。
    在这里插入图片描述
    未归一化时,距离计算主要受发现时间影响,因为时间单位的差异导致数据尺度不同。通过调整时间单位为年,可以使得距离计算更准确地反映肿瘤大小的重要性。归一化的作用就是去除这样的量纲给计算带来的影响。

三、数据归一化实现方法

3.1 最值归一化方法

  1. 最值归一化将数据映射到0到1之间。
  2. 方法:对每个特征求最大值和最小值,然后使用公式(x - xmin) / (xmax - xmin)进行转换。
    在这里插入图片描述
  3. 适用于数据分布有明确边界的情况,如考试成绩像素值
  4. 缺点:对异常值敏感,可能影响归一化结果。
  5. 注意事项
    在执行归一化的算法时有一个地方需要注意,因为公式 y=(x-MinValue)/(MaxValueMinValue)的分母是 MaxValue-MinValue,如果某一个字段的最大值和最小值是相同的,会出现分母为零的情况。所以对于字段数据全部相同的情况要加以判断,通常来讲如果当前字段全部相等且为非零数值,就转换为 1 来处理。如果当前字段全部数值都是 0,那就直接保留 0。
  6. 最值归一化的实现
    • 整型向量数据的归一化代码

      import numpy as np
      # 随机生成向量,其中每个向量的数值是0-100,生成100个
      x = np.random.randint(0,100,size=100)
      # 根据最值归一化公式,实现Int类型数据的归一化
      # 实现最值归一化公式,返回结果是一个向量,其中每一个元素的值就处于[0,1]之间
      (x - np.min(x)) / (np.max(x) - np.min(x))
      

      在jupyter中执行结果:
      在这里插入图片描述

    • 浮点型矩阵数据的归一化代码

      # 生成50x2的矩阵,其中数值都在0-100之间
      X = np.random.randint(0,100,(50,2))
      # 将整型的矩阵转成浮点型矩阵
      X = np.array(X,dtype=float)
      # 将X矩阵数据进行最值归一化,由于矩阵的列数是2列,因此分别需要对矩阵的每一列进行最值归一化处理,如有多列,则使用循环即可
      for col in range(0,2):# 对X中每列进行最值归一化X[:,col] = (X[:,col] - np.min(X[:,col])) / (np.max(X[:,col]) - np.min(X[:,col]))
      # 可以将X矩阵归一化之后的数据绘制出来,验证其中每列数值是否处于[0,1]之间
      import matplotlib.pyplot as plt
      plt.scatter(X[:,0],X[:,1])
      plt.show()
      

      执行结果:
      在这里插入图片描述
      此时,可以看出图中横纵坐标的数值处于[0,1]之间,说明X矩阵的数据已经完成了最值归一化。

    • 查看X矩阵中的均值和方差

      # 查看X矩阵方差
      [(np.std(X[:,col])) for col in range(0,2)]
      # 查看X矩阵方差
      [(np.std(X[:,col])) for col in range(0,2)]
      

      执行结果:
      在这里插入图片描述

3.2 均值方差归一化方法

  1. 均值方差归一化将数据转换为均值为0,方差为1的分布。

  2. 方法:用每个特征减去均值,再除以方差。
    在这里插入图片描述
    S为方差,Xmean为均值。

  3. 适用于数据分布没有明确边界的情况,如收入分布。

  4. 优点:不受异常值影响,使数据分布更加合理。

  5. 代码实现过

    • 实现步骤及效果:

      • 生成随机矩阵并进行均值方差归一化。
      • 步骤:求均值和方差,减去均值,再除以方差。
      • 结果矩阵中的元素不保证在0到1之间,但均值为0,方差为1。
    • 编写代码

      X = np.random.randint(0,100,(50,2))
      X = np.array(X,dtype=float)
      # 根据均值方差归一化公式,实现X矩阵的均值方差归一化实现代码
      for col in range(0,2):X[:,col] = (X[:,col] - np.mean(X[:,col])) / np.std(X[:,col])
      # 绘制图像查看效果
      plt.scatter(X[:,0],X[:,1])
      plt.show()
      

      执行效果:
      在这里插入图片描述

    • 查看X矩阵中的均值和方差是否接近或等于0和1:

      • 查看X矩阵的每列数据的均值是否接近或等于0

        # 通过图像查看并不是很直观,因此,我们查看X矩阵的每列数据的均值是否接近或等于0
        [(np.mean(X[:,col])) for col in range(0,2)]
        

        执行结果:
        在这里插入图片描述

        浮点数精度限制:计算机在存储和处理浮点数时存在精度限制。不同编程语言和系统对于浮点数的表示遵循 IEEE 754 标准,常见的单精度浮点数(float)通常有大约 7 位十进制有效数字,双精度浮点数(double)大约有 15 - 16 位十进制有效数字。当一个数的绝对值小于计算机所能表示的最小非零浮点数时,就可能会出现下溢情况,计算机可能会将其当作 0 处理。不过, -1.3322676295501878e - 17 一般不会出现这种情况,大多数计算机环境能正常表示它。
        实际应用场景的误差容忍度:在许多实际的计算和应用中,我们会设定一个误差范围(也称为容差)。如果一个数的绝对值小于这个容差,就可以将其当作 0 处理。例如,在数值计算、物理模拟等领域,为了简化计算或者忽略极小的误差,常常会这么做。以下是 Python 示例代码,演示了如何根据容差判断一个数是否近似为 0:

        num = -1.3322676295501878e-17
        tolerance = 1e-15
        if abs(num) < tolerance:print("在给定容差范围内,该数近似为 0")
        else:print("该数不等于 0")
        

        在这里插入图片描述

      • 查看X矩阵的每列数据的方差是否接近或等于1

        # 通过图像查看并不是很直观,因此,我们查看X矩阵的每列数据的方差是否接近或等于1
        [(np.std(X[:,col])) for col in range(0,2)]
        

        执行结果:
        在这里插入图片描述

http://www.lryc.cn/news/534083.html

相关文章:

  • 【专题】2024-2025人工智能代理深度剖析:GenAI 前沿、LangChain 现状及演进影响与发展趋势报告汇总PDF洞察(附原数据表)
  • 非递减子序列(力扣491)
  • 网站快速收录策略:提升爬虫抓取效率
  • 系统思考—自我超越
  • 苍穹外卖-菜品分页查询
  • 子集II(力扣90)
  • user、assistant、system三大角色在大语言模型中的作用(通俗解释)
  • LeetCode 3444.使数组包含目标值倍数的最小增量
  • 2月9日星期日今日早报简报微语报早读
  • MOSSE目标跟踪算法详解
  • 生成式聊天机器人 -- 基于Pytorch + Global Attention + 双向 GRU 实现的SeqToSeq模型 -- 下
  • 本地部署的DeepSeek-R1-32B与DeepSeek-R1-7B模型效果对比
  • AWS Fargate
  • 表单与交互:HTML表单标签全面解析
  • 【电机控制器】STC8H1K芯片——低功耗
  • win10 llamafactory模型微调相关① || Ollama运行微调模型
  • SMU寒假训练周报
  • 高并发读多写少场景下的高效键查询与顺序统计的方案思路
  • Android Studio 配置 Gerrit Code Review
  • html为<td>添加标注文本
  • (done) openMP学习 (Day10: Tasks 原语)
  • 力扣-字符串-28 找出字符串中第一个匹配项的下标
  • linux 基础知识点之工作队列workqueue
  • C++蓝桥杯基础篇(二)
  • 【Android—OpenCV实战】实现霍夫圆检测针对沙盘交通灯信号检测
  • WPS如何接入DeepSeek(通过JS宏调用)
  • 图论——环检测
  • Chapter2:C#基本数据类型
  • kafka服务端之控制器
  • Unity笔试常考