当前位置: 首页 > news >正文

深度学习-神经机器翻译模型

以下为你介绍使用Python和深度学习框架Keras(基于TensorFlow后端)实现一个简单的神经机器翻译模型的详细步骤和代码示例,该示例主要处理英 - 法翻译任务。

1. 安装必要的库

首先,确保你已经安装了以下库:

pip install tensorflow keras numpy pandas

2. 代码实现

import numpy as np
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense# 示例数据,实际应用中应使用大规模数据集
english_sentences = ['I am a student', 'He likes reading books', 'She is very beautiful']
french_sentences = ['Je suis un étudiant', 'Il aime lire des livres', 'Elle est très belle']# 对输入和目标文本进行分词处理
input_tokenizer = Tokenizer()
input_tokenizer.fit_on_texts(english_sentences)
input_sequences = input_tokenizer.texts_to_sequences(english_sentences)target_tokenizer = Tokenizer()
target_tokenizer.fit_on_texts(french_sentences)
target_sequences = target_tokenizer.texts_to_sequences(french_sentences)# 获取输入和目标词汇表的大小
input_vocab_size = len(input_tokenizer.word_index) + 1
target_vocab_size = len(target_tokenizer.word_index) + 1# 填充序列以确保所有序列长度一致
max_input_length = max([len(seq) for seq in input_sequences])
max_target_length = max([len(seq) for seq in target_sequences])input_sequences = pad_sequences(input_sequences, maxlen=max_input_length, padding='post')
target_sequences = pad_sequences(target_sequences, maxlen=max_target_length, padding='post')# 定义编码器模型
encoder_inputs = Input(shape=(max_input_length,))
encoder_embedding = Dense(256)(encoder_inputs)
encoder_lstm = LSTM(256, return_state=True)
_, state_h, state_c = encoder_lstm(encoder_embedding)
encoder_states = [state_h, state_c]# 定义解码器模型
decoder_inputs = Input(shape=(max_target_length,))
decoder_embedding = Dense(256)(decoder_inputs)
decoder_lstm = LSTM(256, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_embedding, initial_state=encoder_states)
decoder_dense = Dense(target_vocab_size, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)# 定义完整的模型
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)# 编译模型
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy')# 训练模型
model.fit([input_sequences, target_sequences[:, :-1]], target_sequences[:, 1:],epochs=100, batch_size=1)# 定义编码器推理模型
encoder_model = Model(encoder_inputs, encoder_states)# 定义解码器推理模型
decoder_state_input_h = Input(shape=(256,))
decoder_state_input_c = Input(shape=(256,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_embedding, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs,[decoder_outputs] + decoder_states)# 实现翻译函数
def translate_sentence(input_seq):states_value = encoder_model.predict(input_seq)target_seq = np.zeros((1, 1))target_seq[0, 0] = target_tokenizer.word_index['<start>']  # 假设存在 <start> 标记stop_condition = Falsedecoded_sentence = ''while not stop_condition:output_tokens, h, c = decoder_model.predict([target_seq] + states_value)sampled_token_index = np.argmax(output_tokens[0, -1, :])sampled_word = target_tokenizer.index_word[sampled_token_index]decoded_sentence += ' ' + sampled_wordif (sampled_word == '<end>' orlen(decoded_sentence) > max_target_length):stop_condition = Truetarget_seq = np.zeros((1, 1))target_seq[0, 0] = sampled_token_indexstates_value = [h, c]return decoded_sentence# 测试翻译
test_input = input_tokenizer.texts_to_sequences(['I am a student'])
test_input = pad_sequences(test_input, maxlen=max_input_length, padding='post')
translation = translate_sentence(test_input)
print("Translation:", translation)

3. 代码解释

  • 数据预处理:使用Tokenizer对英文和法文句子进行分词处理,将文本转换为数字序列。然后使用pad_sequences对序列进行填充,使所有序列长度一致。
  • 模型构建
    • 编码器:使用LSTM层处理输入序列,并返回隐藏状态和单元状态。
    • 解码器:以编码器的状态作为初始状态,使用LSTM层生成目标序列。
    • 全连接层:将解码器的输出通过全连接层转换为目标词汇表上的概率分布。
  • 模型训练:使用fit方法对模型进行训练,训练时使用编码器输入和部分解码器输入来预测解码器的下一个输出。
  • 推理阶段:分别定义编码器推理模型和解码器推理模型,通过迭代的方式生成翻译结果。

4. 注意事项

  • 此示例使用的是简单的示例数据,实际应用中需要使用大规模的平行语料库,如WMT数据集等。
  • 可以进一步优化模型,如使用注意力机制、更复杂的网络结构等,以提高翻译质量。
http://www.lryc.cn/news/533963.html

相关文章:

  • .NET周刊【2月第1期 2025-02-02】
  • 【合集】Java进阶——Java深入学习的笔记汇总 amp; 再论面向对象、数据结构和算法、JVM底层、多线程
  • GPU、CUDA 和 cuDNN 学习研究【笔记】
  • 【5】阿里面试题整理
  • 计算机毕业设计hadoop+spark+hive物流预测系统 物流大数据分析平台 物流信息爬虫 物流大数据 机器学习 深度学习
  • Wpf美化按钮,输入框,下拉框,dataGrid
  • 搜索插入位置:二分查找的巧妙应用
  • Cocos2d-x 游戏开发-打包apk被默认自带了很多不必要的权限导致apk被报毒,如何在Cocos 2d-x中强制去掉不必要的权限-优雅草卓伊凡
  • 自动化xpath定位元素(附几款浏览器xpath插件)
  • String类(6)
  • 动态表格html
  • ZU47DR 100G光纤 高性能板卡
  • mysql8.0使用pxc实现高可用
  • Kotlin 使用 Chrome 无头浏览器
  • Arbess基础教程-创建流水线
  • vscode安装ESP-IDF
  • 第31周:文献阅读
  • GenAI + 电商:从单张图片生成可动态模拟的3D服装
  • 进程(1)
  • ChatGPT搜索免费开放:AI搜索引擎挑战谷歌霸主地位全面分析
  • hadoop之MapReduce:片和块
  • GitPuk快速安装配置教程(入门级)
  • 在CT107D单片机综合训练平台上,8个数码管分别单独依次显示0~9的值,然后所有数码管一起同时显示0~F的值,如此往复。
  • 深入浅出Java数组:从基础到高阶应用
  • 基于 Nginx 的 CDN 基础实现
  • 讲人话的理解ai学习原理
  • Spring boot整合quartz方法
  • 网站改HTTPS方法
  • 数据中台是什么?:架构演进、业务整合、方向演进
  • Java Stream API:高效数据处理的利器引言