当前位置: 首页 > news >正文

kafka生产端之架构及工作原理

文章目录

  • 整体架构
  • 元数据更新

整体架构

消息在真正发往Kafka之前,有可能需要经历拦截器(Interceptor)、序列化器(Serializer)和分区器(Partitioner)等一系列的作用,那么在此之后又会发生什么呢?下面我们来看一下生产者客户端的整体架构,如图所示。

在这里插入图片描述

整个生产者客户端由两个线程协调运行,这两个线程分别为主线程Sender线程(发送线程)。在主线程中由KafkaProducer创建消息,然后通过可能的拦截器、序列化器和分区器的作用之后缓存到消息累加器(RecordAccumulator,也称为消息收集器)中。Sender线程负责从RecordAccumulator中获取消息并将其发送到Kafka中。

RecordAccumulator主要用来缓存消息以便Sender线程可以批量发送,进而减少网络传输的资源消耗以提升性能。RecordAccumulator缓存的大小可以通过生产者客户端参数buffer.memory配置,默认值为33554432B,即32MB。如果生产者发送消息的速度超过发送到服务器的速度,则会导致生产者空间不足,这个时候KafkaProducer的send0方法调用要么被阻塞,要么抛出异常,这个取决于参数max.b1ock.ms的配置,此参数的默认值为60000,即60秒。

主线程中发送过来的消息都会被追加到RecordAccumulator的某个双端队列(Deque)中,在RecordAccumulator的内部为每个分区都维护了一个双端队列,队列中的内容就是ProducerBatch,即Deque。消息写入缓存时,追加到双端队列的尾部;Sender读取消息时,从双端队列的头部读取。注意ProducerBatch不是ProducerRecord,ProducerBatch中可以包含一至多个ProducerRecord。通俗地说,ProducerRecord是生产者中创建的消息,而ProducerBatch是指一个消息批次,ProducerRecord会被包含在ProducerBatch中,这样可以使字节的使用更加紧漆。与此同时,将较小的ProducerRecord拼漆成一个较大的ProducerBatch,也可以减少网络请求的次数以提升整体的吞吐量。ProducerBatch和消息的具体格式有关。如果生产者客户端需要向很多分区发送消息,则可以将buffer.memory参数适当调大以增加整体的吞吐量。

消息在网络上都是以字节(Byte)的形式传输的,在发送之前需要创建一块内存区域来保存对应的消息。在Kafka生产者客户端中,通过java.io.ByteBuffer实现消息内存的创建和释放。不过频繁的创建和释放是比较耗费资源的,在RecordAccumulator的内部还有一个BufferPool,它主要用来实现ByteBuffer的复用,以实现缓存的高效利用。不过BufferPool只针对特定大小的ByteBuffer进行管理,而其他大小的ByteBuffer不会缓存进BufferPool中,这个特定的大小由batch.size参数来指定,默认值为16384B,即16KB。我们可以适当地调大batch.size参数以便多缓存一些消息。

ProducerBatch的大小和batch.size参数也有着密切的关系。当一条消息(ProducerRecord)流入RecordAccumulator时,会先寻找与消息分区所对应的双端队列(如果没有则新建),再从这个双端队列的尾部获取一个ProducerBatch(如果没有则新建),查看ProducerBatch中是否还可以写入这个ProducerRecord,如果可以则写入,如果不可以则需要创建一个新的ProducerBatch。在新建ProducerBatch时评估这条消息的大小是否超过batch.size参数的大小,如果不超过,那么就以batch.size参数的大小来创建ProducerBatch,这样在使用完这段内存区域之后,可以通过BufferPool的管理来进行复用;如果超过,那么就以评估的大小来创建ProducerBatch,这段内存区域不会被复用。

Sender从RecordAccumulator中获取缓存的消息之后,会进一步将原本<分区,Deque>的保存形式转变成<Node,ListProducerBatch>的形式,其中Node表示Kafka集群的broker节点。对于网络连接来说,生产者客户端是与具体的broker节点建立的连接,也就是向具体的broker节点发送消息,而并不关心消息属于哪一个分区;而对于KafkaProducer的应用逻辑而言,我们只关注向哪个分区中发送哪些消息,所以在这单需要做一个应用逻辑层面到网络IO层面的转换。

在转换成<Node,ListProducerBatch>>的形式之后,Sender还会进一步封装成<Node,Request>的形式,这样就可以将Request请求发往各个Node了,这里的Request是指Kafka的各种协议请求,对于消息发送而言就是指具体的ProduceRequest。

请求在从Sender线程发往Kafka之前还会保存到InFlightRequests中,InFlightRequests保存对象的具体形式为Map<NodeId,Deque>,它的主要作用是缓存了已经发出去但还没有收到响应的请求(NodeId是一个String类型,表示节点的id编号)。与此同时,InFlightRequests还提供了许多管理类的方法,并且通过配置参数还可以限制每个连接(也就是客户端与Node之间的连接)最多缓存的请求数。这个配置参数为max.in.flight.requests.per.connection,默认值为5,即每个连接最多只能缓存5个未响应的请求,超过该数值之后就不能再向这个连接发送更多的请求了,除非有缓存的请求收到了响应(Response)。通过比较Deque的size与这个参数的大小来判断对应的Node中是否已经堆积了很多未响应的消息,如果真是如此,那么说明这个Node节点负载较大或网络连接有问题,再继续向其发送请求会增大请求超时的可能。

元数据更新

上面提及的InFlightRequests还可以获得leastLoadedNode,即所有Node中负载最小的那一个。这里的负载最小是通过每个Node在InFlightRequests中还未确认的请求决定的,未确认的请求越多则认为负载越大。对于图中的InFlightRequests来说,图中展示了三个节点Node0、Node1和Node2,很明显Node1的负载最小。也就是说,Node1为当前的leastLoadedNodec选择leastLoadedNode发送请求可以使它能够尽快发出,避免因网络拥塞等异常而影响整体的进度。leastLoadedNode的概念可以用于多个应用场合,比如元数据请求、消费者组播协议的交互。
在这里插入图片描述

我们只知道主题的名称,对于其他一些必要的信息却一无所知。KafkaProducer要将此消息追加到指定主题的某个分区所对应的leader副本之前,首先需要知道主题的分区数量,然后经过计算得出(或者直接指定)目标分区,之后KafkaProducer需要知道目标分区的leader副本所在的broker节点的地址、端口等信息才能建立连接,最终才能将消息发送到Kafka,在这一过程中所需要的信息都属于元数据信息。

在上面的讲解中我们了解了bootstrap.servers参数只需要配置部分broker节点的地址即可,不需要配置所有broker节点的地址,因为客户端可以自己发现其他broker节点的地址,这一过程也属于元数据相关的更新操作。与此同时,分区数量及leader副本的分布都会动态地变化,客户端也需要动态地捕捉这些变化。

元数据是指Kafka集群的元数据,这些元数据具体记录了集群中有哪些主题,这些主题有哪些分区,每个分区的leader副本分配在哪个节点上,follower副本分配在哪些节点上,哪些副本在AR、ISR等集合中,集群中有哪些节点,控制器节点又是哪一个等信息

当客户端中没有需要使用的元数据信息时,比如没有指定的主题信息,或者超过metadata.max.age.ms时间没有更新元数据都会引起元数据的更新操作。客户端参数metadata.max.age.ms的默认值为300000,即5分钟。元数据的更新操作是在客户端内部进行的,对客户端的外部使用者不可见。当需要更新元数据时,会先挑选出leastLoadedNode,然后向这个Node发送MetadataRequest请求来获取具体的元数据信息。这个更新操作是由Sender线程发起的,在创建完MetadataRequest之后同样会存入InFlightRequests,之后的步骤就和发送消息时的类似。元数据虽然由Sender线程负责更新,但是主线程也需要读取这些信息,这里的数据同步通过synchronized和final关键字来保障

http://www.lryc.cn/news/533717.html

相关文章:

  • 38、【OS】【Nuttx】OSTest分析(3):参数传递
  • 存储异常导致的Oracle重大生产故障
  • C语言时间相关宏定义
  • Android Studio:Application 和 Activity的区别
  • 如何优化爬虫以提高搜索效率
  • git撤销上一次的提交
  • LLM学习笔记1——本地部署Meta-Llama-3.2-1B大模型
  • Nginx反代Ollama接口跨域、无法逐字输出问题
  • 大学资产管理系统中的下载功能设计与实现
  • 股指入门:股指期货是什么意思?在哪里可以做股指期货交易?
  • < OS 有关 > 利用 google-drive-ocamlfuse 工具,在 Ubuntu 24 系统上 加载 Google DRIVE 网盘
  • Golang的引用类型和指针
  • 51单片机之冯·诺依曼结构
  • 32. C 语言 安全函数( _s 尾缀)
  • Android T(13) 源码分析 — BufferQueue 的分析
  • Vite+TS项目中配置路径别名
  • 看盘细节系列 篇二:集合竞价的9点18分大单打到3%以下或以上,9点19分撤单
  • Java继承简介
  • redis之哨兵集群搭建
  • 保姆级AI开发环境搭建
  • Arduino 型号的对比
  • Kafka系列之:定位topic只能保存最新数据的原因
  • AtCoder Beginner Contest 391(A~E题题解)
  • mysql mvcc 锁 关系
  • 安卓手机基于 Termux 安装 AList 并设置开机自启的详细教程
  • LeetCode:503.下一个更大元素II
  • 实验5 配置OSPFv2验证
  • 第二节 docker基础之---镜像构建及挂载
  • 论文阅读:MGMAE : Motion Guided Masking for Video Masked Autoencoding
  • 记录一下 在Mac下用pyinstallter 打包 Django项目