当前位置: 首页 > news >正文

R语言 | 使用 ComplexHeatmap 绘制热图,分区并给对角线分区加黑边框

目的:画热图,分区,给对角线分区添加黑色边框
建议直接看0和4。

0. 准备数据

# 安装并加载必要的包
#install.packages("ComplexHeatmap")  # 如果尚未安装
library(ComplexHeatmap)# 使用 iris 数据集 #data(iris)# 选择数值列(去掉物种列)
data0 <- iris
rownames(data0)=paste0(iris$Species, 1:nrow(data0))# data0 <- mtcars 分类效果不好# 随机抽取30个
set.seed(42)
dat=data0[sample(nrow(data0), 30), 1:4]
#dat=data0# 计算余弦距离
#install.packages("proxy")      # 如果尚未安装
library("proxy")
distance_matrix <- as.matrix(dist(dat, method = "cosine"))
# 如果不想安装新包,也可以使用默认的欧氏距离:
#distance_matrix <- as.matrix(dist(iris_data, method = "euclidean"))# 使用相似性绘图 simi=1-dist
similarity=1-distance_matrixdim(similarity)
[1] 30 30

1. Heatmap 全部分块加黑框

library(circlize)
col_fun = colorRamp2(c(-2, 0, 2), c("green", "white", "red"))
col_fun(seq(-3, 3))Heatmap(similarity, name = "mat", #col = col_fun,row_km = 3, column_km = 3,)
# 每个分块绘制黑边框
# When the heatmap is split, layer_fun is applied in every slice.
Heatmap(similarity, name = "mat", #col = col_fun,row_km = 3, column_km = 3,layer_fun = function(j, i, x, y, width, height, fill) {# 全部分块都加黑框v = pindex(similarity, i, j)#grid.text(sprintf("%.1f", v), x, y, gp = gpar(fontsize = 10))str(v)grid.rect(gp = gpar(lwd = 2, fill = "transparent"))if(sum(v > 0)/length(v) > 0.75) {}})

在这里插入图片描述

2. 为对角线分块添加黑边框

Heatmap(similarity, name = "mat",#col = c("white", "yellow", "red3"),#col = col_fun,col =  colorRamp2(c(0.5, 0.75, 1), c("white", "yellow", "red3")),row_km = 3, column_km = 3,layer_fun = function(j, i, x, y, width, height, fill, slice_r, slice_c) {v = pindex(similarity, i, j)#grid.text(sprintf("%.1f", v), x, y, gp = gpar(fontsize = 10))if(slice_r == slice_c) {grid.rect(gp = gpar(lwd = 4, fill = "transparent", col="black"))}})

在这里插入图片描述

3. 添加列注释

还有一个与 pheatmap 包同名的函数:


annotation_col = data.frame(type = data0$Species,row.names = rownames(data0)
)[rownames(dat), ,drop=F]
# set colors
ann_colors = list(#type = c('setosa'="#ed553b", 'versicolor'="#99b433", 'virginica'="orange")type = c('setosa'="violetred1", 'versicolor'="turquoise2", 'virginica'="blueviolet")
)
# "#ed553b", "#99b433"
#violetred1,turquoise2,pheatmap(similarity,name = "Cosine\nsimilarity",main="xx", border_color = NA,clustering_method = "ward.D2",annotation_col = annotation_col, #set anno for columnannotation_colors = ann_colors, #set colors#col = c("white", "yellow", "red3"),#col = col_fun,col =  colorRamp2(c(0.8, 0.9, 1), c("white", "yellow", "red3")),row_km = 3, column_km = 3,layer_fun = function(j, i, x, y, width, height, fill, slice_r, slice_c) {v = pindex(similarity, i, j)#grid.text(sprintf("%.1f", v), x, y, gp = gpar(fontsize = 10))if(slice_r == slice_c) {grid.rect(gp = gpar(lwd = 4, fill = "transparent", col="black"))}})

在这里插入图片描述

Bug:

有一个问题:不同次执行,图竟然是不同的,不仅仅是分类的排列顺序问题,而是分类本身也不同了。搜了一下, 竟然受到随机数种子的影响?!固定的数据,固定的参数,每次聚类为什么还要受到随机数影响?不理解!难道非监督的聚类还要人工判断对不对?

比如,对以上最后一个聚类函数,设置不同的随机数种子,结果分别是:

# set.seed(45) #这个随机数竟然影响分类位置?!比如修改随机数种子,图分别为
pheatmap(similarity,name = "Cosine\nsimilarity",main="xx", border_color = NA,clustering_method = "ward.D2",annotation_col = annotation_col, #set anno for columnannotation_colors = ann_colors, #set colors#col = c("white", "yellow", "red3"),#col = col_fun,col =  colorRamp2(c(0.8, 0.9, 1), c("white", "yellow", "red3")),row_km = 3, column_km = 3,layer_fun = function(j, i, x, y, width, height, fill, slice_r, slice_c) {v = pindex(similarity, i, j)#grid.text(sprintf("%.1f", v), x, y, gp = gpar(fontsize = 10))if(slice_r == slice_c) {grid.rect(gp = gpar(lwd = 4, fill = "transparent", col="black"))}})

在这里插入图片描述

原因:使用kmeans聚类,确实是随机数确定初始中心的。不使用kmeans聚类,就不会受到随机数的影响。

4. 层次聚类,对结果分群

  • 原来:row_km = 3, column_km = 3, #kmeans确实是种子确定初始中心,结果会随随机数而变化
  • 现在:cutree_row=3, cutree_cols=3, #层次聚类是稳定的
pheatmap(similarity,name = "Cosine\nsimilarity",main="Hierarchical cluster", border_color = NA,clustering_method = "ward.D2",annotation_col = annotation_col, #set anno for columnannotation_colors = ann_colors, #set colors#col = c("white", "yellow", "red3"),#col = col_fun,col =  colorRamp2(c(0.8, 0.9, 1), c("white", "yellow", "red3")),#row_km = 3, column_km = 3, #kmeans确实是种子确定初始中心cutree_row=3, cutree_cols=3, #层次聚类是稳定的layer_fun = function(j, i, x, y, width, height, fill, slice_r, slice_c) {v = pindex(similarity, i, j)#grid.text(sprintf("%.1f", v), x, y, gp = gpar(fontsize = 10))if(slice_r == slice_c) {grid.rect(gp = gpar(lwd = 4, fill = "transparent", col="black"))}})

在这里插入图片描述

Ref

http://www.lryc.cn/news/532217.html

相关文章:

  • React图标库: 使用React Icons实现定制化图标效果
  • Python sider-ai-api库 — 访问Claude、llama、ChatGPT、gemini、o1等大模型API
  • DeepSeek、哪吒和数据库:厚积薄发的力量
  • DDD - 微服务架构模型_领域驱动设计(DDD)分层架构 vs 整洁架构(洋葱架构) vs 六边形架构(端口-适配器架构)
  • 第 1 天:UE5 C++ 开发环境搭建,全流程指南
  • 【华为OD-E卷 - 109 磁盘容量排序 100分(python、java、c++、js、c)】
  • 【大数据技术】编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)
  • 5-Scene层级关系
  • JVM执行流程与架构(对应不同版本JDK)
  • 本地部署 DeepSeek-R1:简单易上手,AI 随时可用!
  • 请求响应(接上篇)
  • 数组排序算法
  • 防火墙的安全策略
  • 2025Java面试题超详细整理《微服务篇》
  • 中位数定理:小试牛刀> _ <2025牛客寒假1
  • (2025,LLM,下一 token 预测,扩散微调,L2D,推理增强,可扩展计算)从大语言模型到扩散微调
  • 如何开发一个大语言模型,开发流程及需要的专业知识
  • 【数据采集】基于Selenium采集豆瓣电影Top250的详细数据
  • neo4j-在Linux中安装neo4j
  • 多无人机--强化学习
  • UE制作2d游戏
  • 说一下JVM管理的常见参数
  • 【FPGA】 MIPS 12条整数指令【2】
  • 机器学习--python基础库之Matplotlib (2) 简单易懂!!!
  • mybatis plus 持久化使用技巧及场景
  • JVM监控和管理工具
  • 记录 | 基于MaxKB的文字生成视频
  • 生成式AI安全最佳实践 - 抵御OWASP Top 10攻击 (下)
  • 现场流不稳定,EasyCVR视频融合平台如何解决RTSP拉流不能播放的问题?
  • 文献阅读 250205-Global patterns and drivers of tropical aboveground carbon changes