当前位置: 首页 > news >正文

pytorch实现变分自编码器

 人工智能例子汇总:AI常见的算法和例子-CSDN博客 

变分自编码器(Variational Autoencoder, VAE)是一种生成模型,属于深度学习中的无监督学习方法。它通过学习输入数据的潜在分布(Latent Distribution),生成与输入数据相似的新样本。VAE 可以用于数据生成、降维、异常检测等任务。

VAE 的关键思想是在传统的自编码器(Autoencoder)的基础上,引入了变分推断(Variational Inference)和概率模型,使得网络能够学习到数据的潜在分布,而不仅仅是数据的映射。

VAE 的结构:

  1. 编码器(Encoder):将输入数据映射到潜在空间的分布。不同于传统的自编码器直接将数据映射到一个固定的潜在向量,VAE 通过输出潜在变量的均值和方差来描述一个概率分布,这样潜在空间中的每个点都有一个概率分布。
  2. 潜在空间(Latent Space):表示数据的潜在特征。在 VAE 中,潜在空间的表示是一个分布而不是固定的值。通常,采用正态分布来作为潜在空间的先验分布。
  3. 解码器(Decoder):从潜在空间的样本中重构输入数据。解码器通过将潜在空间的点映射回数据空间来生成样本。

VAE 的目标函数:

VAE 的目标是最大化变分下界(Variational Lower Bound,简称 ELBO),即通过优化以下两部分的加权和:

  • 重构误差(Reconstruction Loss):衡量生成的数据和输入数据之间的差异,通常使用均方误差(MSE)或交叉熵(Cross-Entropy)。
  • KL 散度(KL Divergence):衡量潜在空间的分布与先验分布(通常是标准正态分布)之间的差异。

其最终的目标是使生成的数据尽可能接近真实数据,同时使潜在空间的分布接近先验分布。

优点:

  • VAE 能够生成具有多样性的样本,尤其适用于图像、音频等数据的生成。
  • 潜在空间通常具有良好的结构,可以进行插值、样本生成等操作。

应用:

  • 生成任务:如图像生成、文本生成等。
  • 数据重构:如去噪、自编码等。
  • 半监督学习:VAE 可以结合有标签和无标签的数据进行训练,提升模型的泛化能力。
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt# 生成圆形图像的函数(使用PyTorch)
def generate_circle_image(size=64):image = torch.zeros((1, size, size))  # 使用 PyTorch 创建空白图像center = size // 2radius = size // 4for y in range(size):for x in range(size):if (x - center) ** 2 + (y - center) ** 2 <= radius ** 2:image[0, y, x] = 1  # 在圆内的点设置为白色return image# 生成方形图像的函数(使用PyTorch)
def generate_square_image(size=64):image = torch.zeros((1, size, size))  # 使用 PyTorch 创建空白图像padding = size // 4image[0, padding:size - padding, padding:size - padding] = 1  # 设置方形区域为白色return image# 自定义数据集:圆形和方形图像
class ShapeDataset(Dataset):def __init__(self, num_samples=1000, size=64):self.num_samples = num_samplesself.size = sizeself.data = []# 生成数据:一半是圆形图像,一半是方形图像for i in range(num_samples // 2):self.data.append(generate_circle_image(size))self.data.append(generate_square_image(size))def __len__(self):return len(self.data)def __getitem__(self, idx):return self.data[idx].float()  # 直接返回 PyTorch Tensor 格式的数据# VAE模型定义
class VAE(nn.Module):def __init__(self, latent_dim=2):super(VAE, self).__init__()self.latent_dim = latent_dim# 编码器self.fc1 = nn.Linear(64 * 64, 400)self.fc21 = nn.Linear(400, latent_dim)  # 均值self.fc22 = nn.Linear(400, latent_dim)  # 方差# 解码器self.fc3 = nn.Linear(latent_dim, 400)self.fc4 = nn.Linear(400, 64 * 64)def encode(self, x):h1 = torch.relu(self.fc1(x.view(-1, 64 * 64)))return self.fc21(h1), self.fc22(h1)  # 返回均值和方差def reparameterize(self, mu, logvar):std = torch.exp(0.5 * logvar)eps = torch.randn_like(std)return mu + eps * stddef decode(self, z):h3 = torch.relu(self.fc3(z))return torch.sigmoid(self.fc4(h3)).view(-1, 1, 64, 64)  # 重构图像def forward(self, x):mu, logvar = self.encode(x)z = self.reparameterize(mu, logvar)return self.decode(z), mu, logvar# 损失函数:重构误差 + KL 散度
def loss_function(recon_x, x, mu, logvar):BCE = nn.functional.binary_cross_entropy(recon_x.view(-1, 64 * 64), x.view(-1, 64 * 64), reduction='sum')# KL 散度return BCE + 0.5 * torch.sum(torch.exp(logvar) + mu ** 2 - 1 - logvar)# 设置超参数
batch_size = 128
epochs = 10
latent_dim = 2
learning_rate = 1e-3# 数据加载
train_loader = DataLoader(ShapeDataset(num_samples=2000), batch_size=batch_size, shuffle=True)# 创建模型和优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VAE(latent_dim).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)# 训练模型
def train(epoch):model.train()train_loss = 0for batch_idx, data in enumerate(train_loader):data = data.to(device)optimizer.zero_grad()recon_batch, mu, logvar = model(data)loss = loss_function(recon_batch, data, mu, logvar)loss.backward()train_loss += loss.item()optimizer.step()if batch_idx % 100 == 0:print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}] Loss: {loss.item() / len(data):.6f}')print(f'Train Epoch: {epoch} Average loss: {train_loss / len(train_loader.dataset):.4f}')# 测试并显示一些真实图像和生成的图像
def test():model.eval()with torch.no_grad():# 获取一批真实的图像(原始图像)real_images = next(iter(train_loader))[:64]  # 只取前64个图像real_images = real_images.cpu().numpy()# 从潜在空间随机生成一些样本sample = torch.randn(64, latent_dim).to(device)generated_images = model.decode(sample).cpu().numpy()# 显示真实图像和生成的图像,分别标明fig, axes = plt.subplots(8, 8, figsize=(8, 8))axes = axes.flatten()for i in range(64):if i < 32:  # 前32个显示真实图像axes[i].imshow(real_images[i].squeeze(), cmap='gray')axes[i].set_title('Real', fontsize=8)else:  # 后32个显示生成图像axes[i].imshow(generated_images[i - 32].squeeze(), cmap='gray')axes[i].set_title('Generated', fontsize=8)axes[i].axis('off')plt.tight_layout()plt.show()# 训练模型
for epoch in range(1, epochs + 1):train(epoch)# 训练完成后,显示生成的图像
test()

解释:

  1. 真实图像 (real_images):我们通过 next(iter(train_loader)) 获取一批真实图像,并将其转换为 NumPy 数组,以便 matplotlib 显示。
  2. 生成图像 (generated_images):通过模型生成的图像,使用 decode() 方法生成潜在空间的样本。
  3. 图像展示:前 32 张图像展示真实图像,后 32 张图像展示生成的图像。每个图像上方都有 RealGenerated 标注。

结果:

  • 前32个图像:显示真实图像,并标注为 Real
  • 后32个图像:显示通过训练后的 VAE 生成的图像,并标注为 Generated
http://www.lryc.cn/news/532077.html

相关文章:

  • Node.js与嵌入式开发:打破界限的创新结合
  • Noise Conditional Score Network
  • 低代码系统-产品架构案例介绍、蓝凌(十三)
  • 51单片机 02 独立按键
  • 2021.3.1的android studio版本就很好用
  • CSV数据分析智能工具(基于OpenAI API和streamlit)
  • 移除元素-双指针(下标)
  • 蓝桥杯备赛题目练习(一)
  • FortiOS 存在身份验证绕过导致命令执行漏洞(CVE-2024-55591)
  • 【多线程】线程池核心数到底如何配置?
  • Windows图形界面(GUI)-QT-C/C++ - Qt Combo Box
  • 开源AI智能名片2 + 1链动模式S2B2C商城小程序:内容价值创造与传播新引擎
  • python读取excel工具:openpyxl | AI应用开发
  • 堆的基本概念
  • Android车机DIY开发之软件篇(九) NXP AutomotiveOS编译
  • 嵌入式工程师必学(143):模拟信号链基础
  • 《LLM大语言模型深度探索与实践:构建智能应用的新范式,融合代理与数据库的高级整合》
  • e2studio开发RA2E1(5)----GPIO输入检测
  • Spring @Lazy:延迟初始化,为应用减负
  • 将OneDrive上的文件定期备份到移动硬盘
  • 从0开始,来看看怎么去linux排查Java程序故障
  • DeepSeek-V3:开源多模态大模型的突破与未来
  • Deep Sleep 96小时:一场没有硝烟的科技保卫战
  • Redis地理散列GeoHash
  • JAVA安全—反射机制攻击链类对象成员变量方法构造方法
  • 专业学习|一文了解并实操自适应大邻域搜索(讲解代码)
  • 9. k8s二进制集群之kube-controller-manager部署
  • 轮转数组-三次逆置
  • 3 卷积神经网络CNN
  • 穷举vs暴搜vs深搜vs回溯vs剪枝系列一>黄金矿工