当前位置: 首页 > news >正文

pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)

以下是一个完整的词嵌入(Word Embedding)示例代码,使用 modelscope 下载 tiansz/bert-base-chinese 模型,并通过 transformers 加载模型,获取中文句子的词嵌入。

from modelscope.hub.snapshot_download import snapshot_download
from transformers import BertTokenizer, BertModel
import torch# 下载模型到本地目录
model_dir = snapshot_download('tiansz/bert-base-chinese', cache_dir='./bert-base-chinese')
print(f"模型已下载到: {model_dir}")# 本地模型路径
model_path = model_dir  # 使用下载的模型路径# 从本地加载分词器和模型
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertModel.from_pretrained(model_path)# 将模型设置为评估模式
model.eval()# 输入句子
sentence = "你好,今天天气怎么样?"# 分词并转换为模型输入格式
inputs = tokenizer(sentence, return_tensors='pt')# 获取词嵌入
with torch.no_grad():outputs = model(**inputs)# 输出的最后一层隐藏状态(即词嵌入)
last_hidden_states = outputs.last_hidden_state# 打印词嵌入的形状
print("Embeddings shape:", last_hidden_states.shape)  # [batch_size, sequence_length, hidden_size]# 获取所有 token 的文本表示
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])# 打印每个 token 及其对应的嵌入
for i, (token, embedding) in enumerate(zip(tokens, last_hidden_states[0])):print(f"Token {i}: {token}")print(f"Embedding: {embedding[:10]}...")  # 只打印前 10 维
  1. 下载模型

    使用 modelscope 的 snapshot_download 方法下载 tiansz/bert-base-chinese 模型到本地目录 ./bert-base-chinese
  2. 加载模型

    使用 transformers 的 BertTokenizer 和 BertModel 从本地路径加载模型和分词器。
  3. 输入句子

    定义一个中文句子 "你好,今天天气怎么样?"
  4. 分词和编码

    使用分词器将句子转换为模型输入格式(包括 input_ids 和 attention_mask)。
  5. 获取词嵌入

    将输入传递给模型,获取最后一层隐藏状态(即词嵌入)。
  6. 输出结果

    打印每个 token 及其对应的嵌入向量(只打印前 10 维)。
Downloading Model to directory: ./bert-base-chinese/tiansz/bert-base-chinese
模型已下载到: ./bert-base-chinese/tiansz/bert-base-chinese
Embeddings shape: torch.Size([1, 13, 768])
Token 0: [CLS]
Embedding: tensor([ 1.0592,  0.1071,  0.4324,  0.0860,  0.9301, -0.6972,  0.7214, -0.0408,-0.1321, -0.1840])...
Token 1: 你
Embedding: tensor([ 0.2686,  0.1246,  0.4344,  0.5293,  0.7844, -0.7398,  0.4845, -0.3669,-0.6001,  0.8876])...
Token 2: 好
Embedding: tensor([ 0.9697,  0.3952,  0.6012, -0.0386,  0.6996, -0.4031,  1.0839,  0.0119,0.0551,  0.2817])...
Token 3: ,
Embedding: tensor([ 0.8255,  0.6987,  0.0310,  0.4167, -0.0159, -0.5835,  1.4922,  0.3883,0.9030, -0.1529])...
Token 4: 今
Embedding: tensor([ 0.1640,  0.2744,  0.6168,  0.0693,  1.0125, -0.4001, -0.2779,  0.6306,-0.1302, -0.0534])...
Token 5: 天
Embedding: tensor([ 0.5449, -0.1022,  0.0316, -0.4571,  0.6967,  0.0789,  0.6432,  0.0501,0.3832, -0.3269])...
Token 6: 天
Embedding: tensor([ 1.0107, -0.3673, -1.0272, -0.1893,  0.3766,  0.2341,  0.3552,  0.0228,-0.2411, -0.2227])...
Token 7: 气
Embedding: tensor([ 0.9320, -0.8562, -0.9696,  0.2202,  0.1046,  0.3335, -0.2725, -0.3014,-0.0057, -0.2503])...
Token 8: 怎
Embedding: tensor([ 0.7004, -0.3408,  0.1803, -0.0093, -0.0996,  0.9946,  0.0251,  0.0321,0.1867, -0.6998])...
Token 9: 么
Embedding: tensor([ 0.7296,  0.0704,  0.2153, -0.2680, -0.4890,  0.8920,  0.0324, -0.0820,0.5248, -0.6742])...
Token 10: 样
Embedding: tensor([ 0.2482,  0.0567,  0.2574,  0.1359,  0.4210,  0.9753,  0.2528, -0.2645,0.3426, -0.4405])...
Token 11: ?
Embedding: tensor([ 1.4162,  0.4149,  0.1098, -0.7175,  0.9875, -0.4366,  0.8482,  0.2046,0.2398, -0.1031])...
Token 12: [SEP]
Embedding: tensor([ 0.2140,  0.1362,  0.3720,  0.5722,  0.3005, -0.1858,  1.1392,  0.2413,-0.1240,  0.0177])...

http://www.lryc.cn/news/531277.html

相关文章:

  • Windows电脑本地部署运行DeepSeek R1大模型(基于Ollama和Chatbox)
  • 区间覆盖问题
  • 【LLM-agent】(task2)用llama-index搭建AI Agent
  • SpringAI 人工智能
  • 【axios二次封装】
  • P7497 四方喝彩 Solution
  • 深入剖析 Bitmap 数据结构:原理、应用与优化策略
  • bypass hcaptcha、hcaptcha逆向
  • WebForms DataList 深入解析
  • C# List 列表综合运用实例⁓Hypak原始数据处理编程小结
  • 【C++基础】字符串/字符读取函数解析
  • 大模型-CLIP 详细介绍
  • 1.4 Go 数组
  • WebSocket——环境搭建与多环境配置
  • 三、递推关系与母函数,《组合数学(第4版)》卢开澄 卢华明
  • 线程互斥同步
  • DeepSeek R1 AI 论文翻译
  • 如何计算态势感知率?
  • 二、CSS笔记
  • Alibaba开发规范_异常日志之日志规约:最佳实践与常见陷阱
  • 使用istio实现权重路由
  • M. Triangle Construction
  • 每天学点小知识之设计模式的艺术-策略模式
  • 机试题——到邻国目标城市的最短距离
  • Python + Tkinter + pyttsx3实现的桌面版英语学习工具
  • 【Vite + Vue + Ts 项目三个 tsconfig 文件】
  • AI时代IT行业职业方向规划大纲
  • Mac M1 Comfyui 使用MMAudio遇到的问题解决?
  • 大语言模型深度研究功能:人类认知与创新的新范式
  • [SAP ABAP] 性能优化