当前位置: 首页 > news >正文

【Deep Seek本地化部署】模型实测:规划求解python代码

目录

前言

一、实测

1、整数规划问题

2、非线性规划问题

二、代码正确性验证

1、整数规划问题代码验证

2、非线性规划问题代码验证

三、结果正确性验证

1、整数规划问题结果正确性验证

2、非线性规划问题正确性验证

四、整数规划问题示例

后记


前言

模型:使用ollama部署的deepseek-r1:14b。

一、实测

直接问:规划求解python代码

回答:它给出了两份代码,一个适用于整数规划问题,一个适用于非线性规划。

1、整数规划问题

from pulp import *# 创建问题
prob = LpProblem('example', LpMaximize)# 定义变量
x1 = LpVariable('x1', 0, None, Integer)
x2 = LpVariable('x2', 0, None, Integer)# 定义目标函数
prob += 3 * x1 + 2 * x2# 定义约束条件
prob += x1 + x2 <= 4
prob += 2 * x1 + x2 <= 6# 求解问题
prob.solve()# 输出结果
print("状态:", prob.status)
print(f"x1 = {x1.value}")
print(f"x2 = {x2.value}")
print(f"目标函数值 = {value(prob.objective)}")

2、非线性规划问题

from scipy.optimize import minimize# 目标函数
def objective(x):return x[0]**2 + x[1]**2# 约束条件
constraints = [{'type': 'ineq', 'fun': lambda x: 4 - (x[0] + x[1])},  # x1 + x2 <= 4{'type': 'ineq', 'fun': lambda x: 6 - (2*x[0] + x[1])}   # 2x1 + x2 <= 6
]# 初始猜测值
x0 = [0, 0]# 使用SLSQP方法求解
result = minimize(objective, x0, method='SLSQP', constraints=constraints)if result.success:print("结果:")print(f"x1 = {result.x[0]:.2f}")print(f"x2 = {result.x[1]:.2f}")print(f"目标函数值 = {result.fun}")
else:print("无解或问题未定义。")

二、代码正确性验证

1、整数规划问题代码验证

直接报错……

问题:LpVariable方法的第四个参数有问题。

# 定义变量
x1 = LpVariable('x1', 0, None, Integer)
x2 = LpVariable('x2', 0, None, Integer)

改为:

# 定义变量
x1 = LpVariable('x1', 0, None, "Integer")
x2 = LpVariable('x2', 0, None, "Integer")

或者改为这个也行:

# 定义变量
x1 = LpVariable('x1', 0, None, LpInteger)
x2 = LpVariable('x2', 0, None, LpInteger)

修改完就正常运行了。

2、非线性规划问题代码验证

第二份代码就正常运行了。

三、结果正确性验证

1、整数规划问题结果正确性验证

显然,一眼就看出来了,它结果有问题,x1和x2应为具体的数值。

问题:

print(f"x1 = {x1.value}")
print(f"x2 = {x2.value}")

在源码中找到一个比较可疑的变量名,试试看。

修改:

print(f"x1 = {x1.varValue}")
print(f"x2 = {x2.varValue}")

结果:

那么这个结果是否正确呢?还需进一步验证

问题转换:

设:x = x1,y = x2(为方便查看)

限制条件:

① x ≥ 0,且为整数

② y ≥ 0,且为整数

③ x + y ≤ 4

④ 2x + y ≤ 6

求:当x和y取何值时,3x + 2y取最大值(创建问题时使用的是LpMaximize,即求最大值)

解:直接上图

正确答案为:x = 2,y = 2,目标函数最大值为10。

结果正确。

2、非线性规划问题正确性验证

问题转换:

设:x = x1,y = x2(为方便查看)

限制条件:

① x ≥ 0(因初始猜测值的是x0 = [0, 0])

② y ≥ 0(因初始猜测值的是x0 = [0, 0])

③ x + y ≤ 4

④ 2x + y ≤ 6

求:当x和y取何值时,x² + y²取最小值(使用的是SciPy库中的optimize中的minimize)

解:直接上图

根据条件可知,x和y的取值范围在四边形ABCD的范围内,很容易得出当x = 0,y = 0时,x² + y²的最小值为0。

结果正确。

四、整数规划问题示例

from pulp import *
'''
物品A 6.85元/个
物品B 5.28元/个
物品C 2.3元/个
总价=90.56元
求A、B、C分别买了几个
'''arr = [6.85, 5.28, 2.3]
total = 90.56# 创建问题实例
prob = LpProblem("example", LpMaximize)# 定义决策变量(整数)
n = len(arr)
variables = [LpVariable(f'x{i+1}', 0, None, LpInteger) for i in range(n)]# 定义约束条件
prob += lpSum([arr[i] * variables[i] for i in range(n)]) == total# 求解问题
prob.solve()# 输出结果
print("Status:", prob.status)
for i in range(n):print(f"x{i+1} = {variables[i].value()}")'''
结果
Status: 1
x1 = 10.0
x2 = 2.0
x3 = 5.0
'''
from pulp import *
'''
假设有三种产品,每种产品的单位利润分别为 [3, 5, 4] 元,
而生产每个产品需要消耗的资源为 [2, 4, 3] 单位,
总共有 100 单位的资源可用。
目标是确定每种产品的生产数量,以使总利润最大化。
'''# 输入数据
profits = [3, 5, 4]    # 利润数组
resource_usage = [2, 4, 3]  # 资源消耗数组
total_resource = 100     # 总资源可用量# 创建问题实例
prob = LpProblem("Maximize_Profits", LpMaximize)# 定义决策变量(整数)
n = len(profits)
variables = [LpVariable(f'x{i+1}', 0, None, LpInteger) for i in range(n)]# 定义目标函数:最大化总利润
prob += lpSum([profits[i] * variables[i] for i in range(n)]), "Maximize Profits"# 添加约束条件:资源限制
prob += lpSum([resource_usage[i] * variables[i] for i in range(n)]) <= total_resource, "Total Resource Constraint"# 求解问题
prob.solve()# 输出结果
print("Status:", prob.status)
for i in range(n):print(f"x{i+1} = {variables[i].value()}")
print("Maximized Profit =", value(prob.objective))'''
结果:
Status: 1
x1 = 50.0
x2 = 0.0
x3 = 0.0
Maximized Profit = 150.0
'''

后记

后面又测试了几次,有时候它给出的代码可以直接运行,有时候又有问题

http://www.lryc.cn/news/531183.html

相关文章:

  • MySQL锁类型(详解)
  • 搜索插入位置(35)
  • 八. Spring Boot2 整合连接 Redis(超详细剖析)
  • VDSuit-Full惯性动捕设备:高效率、高品质动画制作的利器
  • 【环境搭建】1.1源码下载与同步
  • 开源智慧园区管理系统对比其他十种管理软件的优势与应用前景分析
  • C语言可变参数
  • (1)Linux高级命令简介
  • frida 入门
  • 基于STM32的智能健康监测手环
  • neo4j-community-5.26.0 install in window10
  • Linux+Docer 容器化部署之 Shell 语法入门篇 【Shell 循环类型】
  • WAWA鱼2024年终总结,关键词:成长
  • 【Redis】hash 类型的介绍和常用命令
  • 二分基础两道
  • Skyeye 云 VUE 版本 v3.15.7 发布
  • 位运算和操作符属性
  • php的使用及 phpstorm环境部署
  • 高阶开发基础——快速入门C++并发编程6——大作业:实现一个超级迷你的线程池
  • Jupyterlab和notebook修改文件的默认存放路径的方法
  • 吴恩达深度学习——有效运作神经网络
  • 享元模式——C++实现
  • 【Go语言圣经】第五节:函数
  • win32汇编环境,窗口程序中使用进度条控件
  • Vscode的AI插件 —— Cline
  • Flink (十三) :Table API 与 DataStream API 的转换 (一)
  • Android --- handler详解
  • [EAI-023] FAST,机器人动作专用的Tokenizer,提高VLA模型的能力和训练效率
  • 关于贪心学习的文笔记录
  • SLAM技术栈 ——《视觉SLAM十四讲》学习笔记(一)