当前位置: 首页 > news >正文

Ollama+OpenWebUI部署本地大模型

Ollama+OpenWebUI部署本地大模型

前言

Ollama是一个强大且易于使用的本地大模型推理框架,它专注于简化和优化大型语言模型(LLMs)在本地环境中的部署、管理和推理工作流。可以将Ollama理解为一个大模型推理框架的后端服务。

Ollama

Ollama安装有两种方式:

  • docker安装
  • 脚本手动安装

不论是 docker 安装还是脚本手动安装,都分为 无GPU 版本和 GPU 版本。

Ollama Docker 安装

# apt 安装 (NVIDIA GPU)
curl -fsSL <https://nvidia.github.io/libnvidia-container/gpgkey> \\| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpgcurl -s -L <https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list> \\| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \\| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.listsudo apt-get updatesudo apt-get install -y nvidia-container-toolkitsudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker# 启动容器(无GPU)
# -v ollama:/root/.ollama 表示将宿主机的 ollama 路径和容器的 /root/.ollama 进行挂载
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama# 启动容器(NVIDIA GPU)
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama# 宿主机的 ollama 路径 可以通过以下命令查询。返回的 json 数据查看 "Mounts" 节点
docker inspect ollama

Ollama 手动安装

# 下载(无gpu)
# curl -L <https://ollama.com/download/ollama-linux-amd64.tgz> -o ollama-linux-amd64.tgz
curl -L -C - <https://ollama.com/download/ollama-linux-amd64.tgz> -o /opt/ollama/ollama-linux-amd64.tgz# 下载(有gpu)# 解压
sudo tar -C /usr -xzf ollama-linux-amd64.tgz# 启动服务器
ollama serve# 运行模型
ollama run llama3.2:1b# 拉取模型
ollama pull llama3.2:1b# 删除模型
ollama rm llama3.2:1b# 复制模型
ollama cp llama3.2 my-model# 版本
ollama -v# 模型列表
ollama list# 列出当前加载的模型
ollama ps# 停止当前正在运行的模型
ollama stop llama3.2:1b

配置Ollama环境变量

# 编辑
vim ~/.bashrc
export OLLAMA_HOST=0.0.0.0:11434
export OLLAMA_MODELS=~/.ollama/models
# 退出编辑
# 刷新环境变量
source ~/.bashrc

Open WebUI

Open WebUI 是一个开源的用户界面工具,用于运行和管理大语言模型(LLM)及其他人工智能功能。它的主要目的是简化人工智能模型的本地部署和操作,让用户能够方便地通过浏览器界面与各种AI模型进行交互。

Open WebUI Docker 安装

# 拉取镜像
docker pull ghcr.io/open-webui/open-webui:main# 启动(无gpu)
# OLLAMA_BASE_URL 最好使用实际的ip地址,以防openwebui的docker识别不了ollama后端服务
docker run -d \\
-p 3000:8080 \\
-v /opt/ollama/open-webui:/app/backend/data \\
-e HF_ENDPOINT=https://hf-mirror.com \\
-e OLLAMA_BASE_URL=http://0.0.0.0:11434 \\
-e DEFAULT_MODELS=llama3.2:1b \\
--name open-webui \\
--restart always \\
ghcr.io/open-webui/open-webui:main# 启动(NVIDIA GPU)
docker run -d \\
-p 3000:8080 \\
--gpus all \\
-v /opt/ollama/open-webui:/app/backend/data \\
-e HF_ENDPOINT=https://hf-mirror.com \\
-e OLLAMA_BASE_URL=http://0.0.0.0:11434 \\
-e DEFAULT_MODELS=qwen2.5:7b \\
--name open-webui \\
--restart always \\
ghcr.io/open-webui/open-webui:cuda

其中 HF_ENDPOINT 是模型的下载社区 Hugging-Face 的国内镜像。

OLLAMA_BASE_URL 是我们上一步部署的 Ollama 后端服务的基础地址。

查看镜像

docker images

查看容器

docker ps

访问地址:localhost:3000

参考

ollama

openwebui

千问大模型微调

http://www.lryc.cn/news/530814.html

相关文章:

  • Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
  • 【网络】传输层协议TCP(重点)
  • 海思ISP开发说明
  • 实验十 Servlet(一)
  • doris:聚合模型的导入更新
  • Java NIO_非阻塞I/O的实现与优化
  • 代码随想录算法训练营Day51 | 101.孤岛的总面积、102.沉没孤岛、103.水流问题、104.建造最大岛屿
  • Games202Lecture 6 Real-time Environment Mapping
  • 在 Zemax 中使用布尔对象创建光学光圈
  • MySQL知识点总结(十八)
  • [论文总结] 深度学习在农业领域应用论文笔记14
  • MySQL和Redis的区别
  • Rust 中的注释使用指南
  • 2025年2月2日(tcp3次握手4次挥手)
  • 一文了解制造业中的QC是什么
  • 【NEXT】网络编程——上传文件(不限于jpg/png/pdf/txt/doc等),或请求参数值是file类型时,调用在线服务接口
  • 在CentOS服务器上部署DeepSeek R1
  • 算法随笔_36: 复写零
  • MoonBit 编译器(留档学习)
  • 使用 DeepSeek-R1 与 AnythingLLM 搭建本地知识库
  • 网络工程师 (13)时间管理
  • 【xdoj-离散线上练习】T251(C++)
  • 定时器按键tim_key模版
  • Kanass快速安装配置教程(入门级)
  • 无用知识之:std::initializer_list的秘密
  • 论文阅读笔记 —— 英文论文常见缩写及含义
  • 实验9 JSP访问数据库(二)
  • [c语言日寄]C语言类型转换规则详解
  • Airflow:选择合适执行器扩展任务执行
  • 使用冒泡排序模拟实现qsort函数