当前位置: 首页 > news >正文

Two Divisors ( Educational Codeforces Round 89 (Rated for Div. 2) )

Two Divisors ( Educational Codeforces Round 89 (Rated for Div. 2) )

You are given n n n integers a 1 , a 2 , … , a n a_1, a_2, \dots, a_n a1,a2,,an.

For each a i a_i ai find its two divisors d 1 > 1 d_1 > 1 d1>1 and d 2 > 1 d_2 > 1 d2>1 such that gcd ⁡ ( d 1 + d 2 , a i ) = 1 \gcd(d_1 + d_2, a_i) = 1 gcd(d1+d2,ai)=1 (where gcd ⁡ ( a , b ) \gcd(a, b) gcd(a,b) is the greatest common divisor of a a a and b b b) or say that there is no such pair.

Input

The first line contains single integer n n n ( 1 ≤ n ≤ 5 ⋅ 1 0 5 1 \le n \le 5 \cdot 10^5 1n5105) — the size of the array a a a.

The second line contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \dots, a_n a1,a2,,an ( 2 ≤ a i ≤ 1 0 7 2 \le a_i \le 10^7 2ai107) — the array a a a.

Output

To speed up the output, print two lines with n n n integers in each line.

The i i i-th integers in the first and second lines should be corresponding divisors d 1 > 1 d_1 > 1 d1>1 and d 2 > 1 d_2 > 1 d2>1 such that gcd ⁡ ( d 1 + d 2 , a i ) = 1 \gcd(d_1 + d_2, a_i) = 1 gcd(d1+d2,ai)=1 or − 1 -1 1 and − 1 -1 1 if there is no such pair. If there are multiple answers, print any of them.

Example

Input

10
2 3 4 5 6 7 8 9 10 24

Output

-1 -1 -1 -1 3 -1 -1 -1 2 2 
-1 -1 -1 -1 2 -1 -1 -1 5 3 

Note

Let’s look at a 7 = 8 a_7 = 8 a7=8. It has 3 3 3 divisors greater than 1 1 1: 2 2 2, 4 4 4, 8 8 8. As you can see, the sum of any pair of divisors is divisible by 2 2 2 as well as a 7 a_7 a7.

There are other valid pairs of d 1 d_1 d1 and d 2 d_2 d2 for a 10 = 24 a_{10}=24 a10=24, like ( 3 , 4 ) (3, 4) (3,4) or ( 8 , 3 ) (8, 3) (8,3). You can print any of them.

问题描述

给定一组整数 (a_1, a_2, \dots, a_n)。对于每个整数 (a_i),你需要找到两个大于 1 的约数 (d_1) 和 (d_2),使得:

$$

\gcd(d_1 + d_2, a_i) = 1
$$
如果这样的约数对 (d_1) 和 (d_2) 存在,输出它们。如果不存在,则输出 (-1, -1)。如果有多个解,输出其中任意一个即可。

解题思路

关键观察
  1. 约数与因式分解

    • 我们要找到 (a_i) 的约数。如果我们对 (a_i) 进行因式分解,任何有效的 (d_1) 和 (d_2) 必须满足 (\gcd(d_1 + d_2, a_i) = 1)。
    • 一个简单的观察是,对于每个 (a_i),如果它有多个不同的质因数,我们可以将这些质因数分成两个非空集合来构造 (d_1) 和 (d_2)。
  2. GCD 条件

    • 最重要的条件是 (\gcd(d_1 + d_2, a_i) = 1),这意味着 (a_i) 的任何质因数都不应该同时整除 (d_1 + d_2)。
  3. 通过筛法高效因式分解

    • 由于 (a_i) 的最大值可以达到 (10^7),如果直接对每个 (a_i) 进行因式分解,时间复杂度会非常高。因此,我们可以使用 埃拉托斯特尼筛法 预先计算出每个数的最小质因数(SPF),这使得我们可以在 (O(\log a_i)) 时间内对任意数进行因式分解。
  4. 构造 (d_1) 和 (d_2)

    • 如果 (a_i) 只有一个质因数,那么无法将它拆分成满足条件的两个约数。因此,对于质数的幂次,答案应该是 (-1, -1)。
    • 对于有多个质因数的数,我们可以将质因数分成两个非空集合,计算对应的 (d_1) 和 (d_2)。
算法步骤
  1. 筛法:利用筛法预计算每个数的最小质因数(SPF)。
  2. 因式分解:对每个 (a_i) 使用预计算的最小质因数数组来找到它的质因数。
  3. 检查有效性:如果 (a_i) 有多个不同的质因数,将它们分成两组,计算 (d_1) 和 (d_2),并检查 (\gcd(d_1 + d_2, a_i) = 1) 条件。
  4. 输出结果:对每个数,输出对应的 (d_1) 和 (d_2) 或者 (-1, -1)。

代码实现

#include <map>
#include <set>
#include <queue>
#include <deque>
#include <stack>
#include <vector>
#include <string>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <bitset>
#include <iomanip>
#define endl '\n'
#define int long long
#define Max(a, b) (((a) > (b)) ? (a) : (b))
#define Min(a, b) (((a) < (b)) ? (a) : (b))
#define BoBoowen ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
using namespace std;const int inf = 1e9 + 7;
const int N = 1e7 + 10;int isPrime[N];
vector<int> prime;void Prime() {for (int i = 2; i < N; ++i) {isPrime[i] = 1;}for (int i = 2; i < N; ++i) {if (isPrime[i]) {prime.push_back(i);}for (auto it : prime) {if (it * i >= N) {break;}isPrime[it * i] = 0;if (i % it == 0) {break;}}}
}void solved() {Prime();int n;cin >> n;vector<int> a(n);vector<int> ans1(n, -1);vector<int> ans2(n, -1);for (int i = 0; i < n; ++i) {cin >> a[i];}for (int i = 0; i < n; ++i) {if (isPrime[a[i]]) {continue;}int x = a[i];for (auto it : prime) {if (it * it > x) {break;}if (x % it == 0) {int y = 1;while (x % it == 0) {x /= it;y *= it;}if (y != a[i] && __gcd(y + x, a[i]) == 1) {ans1[i] = x;ans2[i] = y;break;}break;}}}for (int i = 0; i < n; ++i) {cout << ans1[i] << ' ';}cout << endl;for (int i = 0; i < n; ++i) {cout << ans2[i] << ' ';}
}signed main() {BoBoowen;int T = 1;while (T--) {solved();}
}

代码解析

  1. Prime 函数

    • 使用筛法计算每个数的最小质因数,并将所有质数存储在 prime 数组中。
  2. 主解法函数 solved

    • 首先读取输入数据,然后初始化 ans1ans2 数组来存储每个数的两个约数。
    • 对于每个 (a_i),如果它是质数,则跳过它,因为质数不能拆分成两个约数。
    • 对于合成数,通过使用预计算的最小质因数来获取其质因数。如果它有多个不同的质因数,则尝试将质因数分成两组,计算 (d_1) 和 (d_2),并检查它们的和是否满足 GCD 条件。
  3. 输出结果

    • 输出两个数组 ans1ans2,分别存储每个数的两个约数。

时间复杂度分析

  1. 筛法计算

    • 筛法的时间复杂度是 (O(A \log \log A)),其中 (A = 10^7)。
  2. 因式分解

    • 对于每个数 (a_i),使用预计算的最小质因数数组进行因式分解的时间复杂度是 (O(\log a_i))。
  3. 总时间复杂度

    • 总的时间复杂度为 (O(A \log \log A + n \log A)),其中 (A = 10^7) 且 (n \leq 5 \times 10^5)。

结论

该算法通过筛法高效地计算出每个数的最小质因数,然后利用这些质因数进行因式分解,并检查是否能找到满足条件的两个约数。该方法能够高效地处理题目给定的约束。

http://www.lryc.cn/news/529930.html

相关文章:

  • 亚博microros小车-原生ubuntu支持系列:17 gmapping
  • Java面试题2025-并发编程进阶(线程池和并发容器类)
  • Stable Diffusion 3.5 介绍
  • 云计算部署模式全面解析
  • Vue 与 Electron 结合开发桌面应用
  • 数据库优化:提升性能的关键策略
  • 使用openAI与Deepseek的感受
  • pytorch实现长短期记忆网络 (LSTM)
  • 【ubuntu】双系统ubuntu下一键切换到Windows
  • 【PyTorch】6.张量形状操作:在深度学习的 “魔方” 里,玩转张量形状
  • 大模型GUI系列论文阅读 DAY4续:《Large Language Model Agent for Fake News Detection》
  • 论文阅读(九):通过概率图模型建立连锁不平衡模型和进行关联研究:最新进展访问之旅
  • python小知识-typing注解你的程序
  • git基础使用--1--版本控制的基本概念
  • “新月智能武器系统”CIWS,开启智能武器的新纪元
  • JVM运行时数据区域-附面试题
  • 增删改查(CRUD)操作
  • Vue.js `Suspense` 和异步组件加载
  • HTB:LinkVortex[WriteUP]
  • Linux命令入门
  • 【问题】Chrome安装不受支持的扩展 解决方案
  • 【题解】AtCoder Beginner Contest ABC391 D Gravity
  • 使用 SpringBoot+Thymeleaf 模板引擎进行 Web 开发
  • 【Java异步编程】CompletableFuture综合实战:泡茶喝水与复杂的异步调用
  • Nginx知识
  • Unity开发游戏使用XLua的基础
  • AI-ISP论文Learning to See in the Dark解读
  • OpenCV:开运算
  • 38. RTC实验
  • Flutter 新春第一弹,Dart 宏功能推进暂停,后续专注定制数据处理支持