当前位置: 首页 > news >正文

【Block总结】PKI 模块,无膨胀多尺度卷积,增强特征提取的能力|即插即用

论文信息

标题: Poly Kernel Inception Network for Remote Sensing Detection

作者: Xinhao Cai, Qiuxia Lai, Yuwei Wang, Wenguan Wang, Zeren Sun, Yazhou Yao

论文链接:https://arxiv.org/pdf/2403.06258

代码链接:https://github.com/NUST-Machine-Intelligence-Laboratory/PKINet
在这里插入图片描述

创新点

Poly Kernel Inception Network (PKINet) 的主要创新在于其设计的卷积结构,旨在解决遥感图像目标检测中的几个关键挑战:

  • 多尺度特征提取: PKINet采用无膨胀的多尺度卷积核,能够有效提取不同尺度的目标特征,避免了传统大核卷积带来的背景噪声问题。

  • 上下文锚定注意力机制: 引入了上下文锚定注意(CAA)模块,以捕获远程上下文信息,增强特征提取的能力。

  • 轻量化设计: 通过并行使用深度卷积和1×1卷积,PKINet在保持高性能的同时,显著降低了模型的复杂性和计算成本。

方法

PKINet的核心方法包括以下几个方面:

  1. 无膨胀多尺度卷积: 通过使用不同大小的卷积核,PKINet能够在不同的感受野中提取丰富的纹理特征,而不依赖于膨胀卷积。

  2. 上下文锚定注意力模块: CAA模块通过全局平均池化和一维卷积,捕获远程像素之间的关系,增强了中心特征的表达能力。

  3. 自适应特征融合: 通过通道维度的自适应融合,PKINet能够有效整合局部和全局上下文信息,从而提高目标检测的准确性。

在这里插入图片描述

无膨胀多尺度卷积PKI 模块详解

Poly Kernel Inception Network (PKINet) 中的 PKI Module 是其核心组成部分,旨在有效提取遥感图像中的多尺度特征。以下是对 PKI Module 的详细解读,包括其设计理念、结构、功能和实验结果。

设计理念

PKI 模块的设计旨在解决遥感图像目标检测中面临的挑战,尤其是目标尺度的巨大变化和复杂背景。与传统方法不同,PKI 模块采用无膨胀的多尺度卷积核,以避免引入背景噪声,同时有效捕获局部上下文信息。

结构

PKI 模块主要由以下几个部分组成:

  1. 小卷积核:

    • 使用小卷积核(如 3 × 3 3 \times 3 3×3)提取局部特征,能够有效捕捉细节信息。
  2. 深度可分离卷积:

    • 采用一系列并行的深度可分离卷积(Depth-wise Convolutions),以捕获不同尺度的上下文信息。这种设计不仅减少了计算复杂度,还提高了特征提取的效率。
  3. 多尺度特征提取:

    • PKI 模块通过组合不同大小的卷积核(如 3 × 3 3 \times 3 3×3, 5 × 5 5 \times 5 5×5, 7 × 7 7 \times 7 7×7 等),实现对多尺度特征的提取,增强了模型对不同尺寸目标的适应能力。

功能

PKI 模块的主要功能包括:

  • 多尺度特征提取: 通过不同大小的卷积核,PKI 模块能够有效提取不同尺度的目标特征,适应遥感图像中目标的多样性。

  • 上下文信息捕获: 通过深度可分离卷积,PKI 模块能够捕获局部上下文信息,增强特征的表达能力。

  • 避免背景噪声: 由于不使用膨胀卷积,PKI 模块能够避免过于稀疏的特征表示,从而提高检测精度。

PKI 模块是 PKINet 的核心组件,通过创新的多尺度卷积设计和深度可分离卷积结构,有效提升了遥感图像目标检测的性能。其在特征提取和上下文信息捕获方面的优势,使得 PKINet 在多个基准数据集上取得了优异的表现,展示了其在实际应用中的潜力。

效果

在多个遥感目标检测基准数据集上进行的实验表明,PKINet在性能上优于传统方法,尤其是在处理目标尺度变化和复杂背景时表现突出。具体来说,PKINet在以下数据集上取得了显著的检测效果:

  • DOTA-v1.0
  • DOTA-v1.5
  • HRSC2016
  • DIOR-R

这些实验结果表明,PKINet不仅提高了检测精度,还在处理速度上也有良好的表现。

实验结果

实验中,PKINet在多个标准数据集上进行了广泛的评估,结果显示:

  • 检测精度: PKINet在各个数据集上均表现出色,尤其是在小目标和复杂背景下的检测能力显著提升。

  • 模型效率: 由于其轻量化设计,PKINet在计算资源的使用上更为高效,适合实际应用场景。

  • 对比分析: 与传统的目标检测模型相比,PKINet在多个指标上均有明显的优势,尤其是在处理多样化的上下文环境时。

总结

Poly Kernel Inception Network (PKINet) 通过创新的卷积结构和上下文注意力机制,成功应对了遥感图像目标检测中的多种挑战。其在特征提取和上下文信息捕获方面的优势,使得PKINet在多个基准数据集上取得了优异的性能,展示了其在实际应用中的潜力。未来的研究可以进一步探索PKINet在其他计算机视觉任务中的应用,以及如何进一步优化其结构以提升性能。

代码

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from typing import Optional, Union, Sequence
import math
def autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn p
def make_divisible(x, divisor):# Returns nearest x divisible by divisorif isinstance(divisor, torch.Tensor):divisor = int(divisor.max())  # to intreturn math.ceil(x / divisor) * divisor
class GSiLU(BaseModule):"""Global Sigmoid-Gated Linear Unit, reproduced from paper <SIMPLE CNN FOR VISION>"""def __init__(self):super().__init__()self.adpool = nn.AdaptiveAvgPool2d(1)def forward(self, x):return x * torch.sigmoid(self.adpool(x))class CAA(BaseModule):"""Context Anchor Attention"""def __init__(self,channels: int,h_kernel_size: int = 11,v_kernel_size: int = 11,norm_cfg: Optional[dict] = dict(type='BN', momentum=0.03, eps=0.001),act_cfg: Optional[dict] = dict(type='SiLU'),init_cfg: Optional[dict] = None,):super().__init__(init_cfg)self.avg_pool = nn.AvgPool2d(7, 1, 3)self.conv1 = ConvModule(channels, channels, 1, 1, 0,norm_cfg=norm_cfg, act_cfg=act_cfg)self.h_conv = ConvModule(channels, channels, (1, h_kernel_size), 1,(0, h_kernel_size // 2), groups=channels,norm_cfg=None, act_cfg=None)self.v_conv = ConvModule(channels, channels, (v_kernel_size, 1), 1,(v_kernel_size // 2, 0), groups=channels,norm_cfg=None, act_cfg=None)self.conv2 = ConvModule(channels, channels, 1, 1, 0,norm_cfg=norm_cfg, act_cfg=act_cfg)self.act = nn.Sigmoid()def forward(self, x):attn_factor = self.act(self.conv2(self.v_conv(self.h_conv(self.conv1(self.avg_pool(x))))))return x*attn_factorclass InceptionBottleneck(BaseModule):"""Bottleneck with Inception module"""def __init__(self,in_channels: int,out_channels: Optional[int] = None,kernel_sizes: Sequence[int] = (3, 5, 7, 9, 11),dilations: Sequence[int] = (1, 1, 1, 1, 1),expansion: float = 1.0,add_identity: bool = True,with_caa: bool = True,caa_kernel_size: int = 11,norm_cfg: Optional[dict] = dict(type='BN', momentum=0.03, eps=0.001),act_cfg: Optional[dict] = dict(type='SiLU'),init_cfg: Optional[dict] = None,):super().__init__(init_cfg)out_channels = out_channels or in_channelshidden_channels = make_divisible(int(out_channels * expansion), 8)self.pre_conv = ConvModule(in_channels, hidden_channels, 1, 1, 0, 1,norm_cfg=norm_cfg, act_cfg=act_cfg)self.dw_conv = ConvModule(hidden_channels, hidden_channels, kernel_sizes[0], 1,autopad(kernel_sizes[0], None, dilations[0]), dilations[0],groups=hidden_channels, norm_cfg=None, act_cfg=None)self.dw_conv1 = ConvModule(hidden_channels, hidden_channels, kernel_sizes[1], 1,autopad(kernel_sizes[1], None, dilations[1]), dilations[1],groups=hidden_channels, norm_cfg=None, act_cfg=None)self.dw_conv2 = ConvModule(hidden_channels, hidden_channels, kernel_sizes[2], 1,autopad(kernel_sizes[2], None, dilations[2]), dilations[2],groups=hidden_channels, norm_cfg=None, act_cfg=None)self.dw_conv3 = ConvModule(hidden_channels, hidden_channels, kernel_sizes[3], 1,autopad(kernel_sizes[3], None, dilations[3]), dilations[3],groups=hidden_channels, norm_cfg=None, act_cfg=None)self.dw_conv4 = ConvModule(hidden_channels, hidden_channels, kernel_sizes[4], 1,autopad(kernel_sizes[4], None, dilations[4]), dilations[4],groups=hidden_channels, norm_cfg=None, act_cfg=None)self.pw_conv = ConvModule(hidden_channels, hidden_channels, 1, 1, 0, 1,norm_cfg=norm_cfg, act_cfg=act_cfg)if with_caa:self.caa_factor = CAA(hidden_channels, caa_kernel_size, caa_kernel_size, None, None)else:self.caa_factor = Noneself.add_identity = add_identity and in_channels == out_channelsself.post_conv = ConvModule(hidden_channels, out_channels, 1, 1, 0, 1,norm_cfg=norm_cfg, act_cfg=act_cfg)def forward(self, x):x = self.pre_conv(x)y = x  # if there is an inplace operation of x, use y = x.clone() instead of y = xx = self.dw_conv(x)x = x + self.dw_conv1(x) + self.dw_conv2(x) + self.dw_conv3(x) + self.dw_conv4(x)x = self.pw_conv(x)if self.caa_factor is not None:y = self.caa_factor(y)if self.add_identity:y = x * yx = x + yelse:x = x * yx = self.post_conv(x)return xif __name__ == "__main__":# 如果GPU可用,将模块移动到 GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 输入张量 (batch_size, height, width,channels)x = torch.randn(1,32,40,40).to(device)# 初始化 HWD 模块dim=32block = InceptionBottleneck(32)print(block)block = block.to(device)# 前向传播output = block(x)print("输入:", x.shape)print("输出:", output.shape)

输出结果:

在这里插入图片描述

http://www.lryc.cn/news/529083.html

相关文章:

  • 自制一个入门STM32 四足机器人具体开发顺序
  • 物联网智能项目之——智能家居项目的实现!
  • [免费]微信小程序智能商城系统(uniapp+Springboot后端+vue管理端)【论文+源码+SQL脚本】
  • C28.【C++ Cont】顺序表的实现
  • 【电工基础】低压电器元件,低压断路器(空开QF),接触器(KM)
  • 从 UTC 日期时间字符串获取 Unix 时间戳:C 和 C++ 中的挑战与解决方案
  • [前端开发]记录国内快速cdn库,用于在线引入JavaScript第三方库
  • 留学生scratch计算机haskell函数ocaml编程ruby语言prolog作业VB
  • CF 766A.Mahmoud and Longest Uncommon Subsequence(Java实现)
  • React 的 12 个核心概念
  • 玩转大语言模型——使用langchain和Ollama本地部署大语言模型
  • 【数据结构】(2)时间、空间复杂度
  • 分享14分数据分析相关ChatGPT提示词
  • dify实现原理分析-rag-数据检索的实现
  • Day30-【AI思考】-错题分类进阶体系——12维错误定位模型
  • 全国31省空间权重矩阵(地理相邻空间、公路铁路地理距离空间、经济空间)权重矩阵数据-社科数据
  • Docker容器数据恢复
  • Visual Studio使用GitHub Copilot提高.NET开发工作效率
  • 【matlab】绘图 离散数据--->连续函数
  • Python大数据可视化:基于python的电影天堂数据可视化_django+hive
  • 几种K8s运维管理平台对比说明
  • YOLO11/ultralytics:环境搭建
  • Effective Objective-C 2.0 读书笔记—— 消息转发
  • 【Python-办公自动化】实现自动化输出json数据类型的分析报告和正逆转换
  • Docker小游戏 | 使用Docker部署RPG网页小游戏
  • 技术周总结 01.13~01.19 周日(Spring Visual Studio git)
  • Linux中使用unzip
  • Baklib引领内容管理平台新时代优化创作流程与团队协作
  • 利用Redis实现数据缓存
  • jQuery小游戏(二)