当前位置: 首页 > news >正文

梯度提升用于高效的分类与回归

使用 决策树(Decision Tree) 实现 梯度提升(Gradient Boosting) 主要是模拟 GBDT(Gradient Boosting Decision Trees) 的原理,即:

  1. 第一棵树拟合原始数据
  2. 计算残差(负梯度方向)
  3. 用新的树去拟合残差
  4. 累加所有树的预测值
  5. 重复步骤 2-4,直至达到指定轮数

下面是一个 纯 Python + PyTorch 实现 GBDT(梯度提升决策树) 的代码示例。

1. 纯 Python 实现梯度提升决策树

import numpy as np
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split# 生成数据
X, y = make_regression(n_samples=1000, n_features=5, noise=0.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 参数
n_trees = 50   # 多少棵树
learning_rate = 0.1  # 学习率# 初始化预测值(全部为 0)
y_pred_train = np.zeros_like(y_train)
y_pred_test = np.zeros_like(y_test)# 训练梯度提升决策树
trees = []
for i in range(n_trees):residuals = y_train - y_pred_train  # 计算残差(负梯度方向)tree = DecisionTreeRegressor(max_depth=3)  # 这里使用较浅的树tree.fit(X_train, residuals)  # 让树学习残差trees.append(tree)# 更新预测值(累加弱学习器的结果)y_pred_train += learning_rate * tree.predict(X_train)y_pred_test += learning_rate * tree.predict(X_test)# 计算损失mse = mean_squared_error(y_train, y_pred_train)print(f"Iteration {i+1}: MSE = {mse:.4f}")# 计算最终测试集误差
final_mse = mean_squared_error(y_test, y_pred_test)
print(f"\nFinal Test MSE: {final_mse:.4f}")

代码解析

  • 第一步:构建一个基础决策树 DecisionTreeRegressor(max_depth=3)
  • 第二步:每棵树学习前面所有树的残差(负梯度方向)。
  • 第三步:训练 n_trees 棵树,每棵树的预测结果乘以 learning_rate 累加到最终预测值。
  • 第四步:每次迭代后更新预测值,减少误差。

2. 用 PyTorch 实现 GBDT

虽然 GBDT 主要基于决策树,但如果你希望用 PyTorch 计算梯度并模拟 GBDT,可以如下操作:

  • 用 PyTorch 计算 损失函数的梯度
  • sklearn.tree.DecisionTreeRegressor 拟合梯度
  • 用 PyTorch 计算最终误差
import torch
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split# 生成数据
X, y = make_regression(n_samples=1000, n_features=5, noise=0.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 参数
n_trees = 50  # 多少棵树
learning_rate = 0.1  # 学习率# 转换数据为 PyTorch 张量
X_train_torch = torch.tensor(X_train, dtype=torch.float32)
y_train_torch = torch.tensor(y_train, dtype=torch.float32)# 初始化预测值
y_pred_train = torch.zeros_like(y_train_torch)# 训练 GBDT
trees = []
for i in range(n_trees):# 计算梯度(残差)residuals = y_train_torch - y_pred_train# 用决策树拟合梯度tree = DecisionTreeRegressor(max_depth=3)tree.fit(X_train, residuals.numpy())trees.append(tree)# 更新预测值y_pred_train += learning_rate * torch.tensor(tree.predict(X_train), dtype=torch.float32)# 计算损失mse = mean_squared_error(y_train, y_pred_train.numpy())print(f"Iteration {i+1}: MSE = {mse:.4f}")

PyTorch 实现的关键点

  1. y_train_torch - y_pred_train 计算 损失的梯度
  2. DecisionTreeRegressor 作为弱学习器,拟合梯度
  3. 预测值 += learning_rate * tree.predict(X_train)

3. 结合 PyTorch 和 XGBoost

如果你要 结合 PyTorch 和 GBDT,可以先用 XGBoost 训练 GBDT,再用 PyTorch 进行深度学习:

import xgboost as xgb
import torch.nn as nn
import torch.optim as optim
import torch
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split# 生成数据
X, y = make_regression(n_samples=1000, n_features=5, noise=0.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练 XGBoost 作为特征提取器
xgb_model = xgb.XGBRegressor(n_estimators=50, max_depth=3, learning_rate=0.1)
xgb_model.fit(X_train, y_train)# 提取 XGBoost 叶子节点特征
X_train_leaves = xgb_model.apply(X_train)
X_test_leaves = xgb_model.apply(X_test)# 定义 PyTorch 神经网络
class NeuralNet(nn.Module):def __init__(self, input_size):super(NeuralNet, self).__init__()self.fc = nn.Linear(input_size, 1)def forward(self, x):return self.fc(x)# 训练 PyTorch 神经网络
model = NeuralNet(X_train_leaves.shape[1])
optimizer = optim.Adam(model.parameters(), lr=0.01)
loss_fn = nn.MSELoss()X_train_tensor = torch.tensor(X_train_leaves, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)for epoch in range(100):optimizer.zero_grad()output = model(X_train_tensor)loss = loss_fn(output, y_train_tensor)loss.backward()optimizer.step()print("Training complete!")

结论

方法适用场景备注
纯 Python GBDT适合小规模数据使用 sklearn.tree.DecisionTreeRegressor
PyTorch 计算梯度 + GBDT适合梯度优化实验计算梯度后用 DecisionTreeRegressor 训练
XGBoost + PyTorch适合大规模数据先用 XGBoost 提取特征,再用 PyTorch 训练

如果你的数据是结构化的(如 表格数据),建议 直接使用 XGBoost/LightGBM,再结合 PyTorch 进行特征工程或后处理。

http://www.lryc.cn/news/529019.html

相关文章:

  • 【单细胞第二节:单细胞示例数据分析-GSE218208】
  • 设计模式 - 行为模式_Template Method Pattern模板方法模式在数据处理中的应用
  • 新春登蛇山:告别岁月,启航未来
  • hive:基本数据类型,关于表和列语法
  • 安装最小化的CentOS7后,执行yum命令报错Could not resolve host mirrorlist.centos.org; 未知的错误
  • 图论——spfa判负环
  • 软件工程概论试题三
  • 21.3-启动流程、编码风格(了解) 第21章-FreeRTOS项目实战--基础知识之新建任务、启动流程、编码风格、系统配置 文件组成和编码风格(了解)
  • 未来无线技术的发展方向
  • Qt5离线安装包无法下载问题解决办法
  • qt-C++笔记之QLine、QRect、QPainterPath、和自定义QGraphicsPathItem、QGraphicsRectItem的区别
  • doris:导入时实现数据转换
  • 新版231普通阿里滑块 自动化和逆向实现 分析
  • 如何构建树状的思维棱镜认知框架
  • openRv1126 AI算法部署实战之——ONNX模型部署实战
  • Vue 组件开发:构建高效可复用的前端界面要素
  • Vue.js组件开发-实现全屏平滑移动、自适应图片全屏滑动切换
  • 水果实体店品牌数字化:RWA + 智能体落地方案
  • DeepSeek模型:开启人工智能的新篇章
  • Kubernetes 环境中的自动化运维实战指南
  • 深入解析 C++17 中的 std::not_fn
  • unity实现回旋镖函数
  • 想品客老师的第九天:原型和继承
  • 力扣【416. 分割等和子集】详细Java题解(背包问题)
  • 2025年AI手机集中上市,三星Galaxy S25系列上市
  • 为AI聊天工具添加一个知识系统 之79 详细设计之20 正则表达式 之7
  • 理解PLT表和GOT表
  • 6 年没回老家过年了
  • 【原创改进】SCI级改进算法,一种多策略改进Alpha进化算法(IAE)
  • 如何把一个python文件打包成一步一步安装的可执行程序