当前位置: 首页 > news >正文

5分钟带你获取deepseek api并搭建简易问答应用

目录

1、获取api

2、获取base_url和chat_model

3、配置模型参数

方法一:终端中临时将加入

方法二:创建.env文件

4、 配置client

5、利用deepseek大模型实现简易问答


        deepseek-v3是截止博文撰写之日,无论是国内还是国际上发布的大模型中表现十分亮眼的模型,这里以deepseek为例,讲解如何获取api_key、base_url、chat_model。

1、获取api

       首先打开deepseek接口的官网:DeepSeek

         点右上角“开放平台”

         新号一般会送10元的余额,左上方会显示你当前余额按照当前的价格所拥有的tokens数量(tokens可以简单的理解为你输入给大模型的提示词+大模型输出的内容之和所占用的字符数,这个后续博客中会细讲分词原理),这个tokens数量可能会随着模型价格变化而变化,不过deepseek的api价格比较便宜,如图上所展示的送给新人的500万tokens数也够个人使用很久了。

        接着,点击左侧的API keys,然后点击创建API key

         一般需要给API key命名用来区分不同的API,比如下图命名为“test”

​        这里需要注意的是,系统生成的API key只有第一次创建时能看到并且复制,此后都无法再次看到,只能看到名字,所以需要大家第一次就将其复制下来,保存到你的文件中,当然如果忘记了也影响不大,重新创建一个就行。

2、获取base_url和chat_model

         同样以deepseek为例,点击2.1.1页面左下角的接口文档,或者直接进入DeepSeek API文档

         进入文档后,在“快速开始”的“首次调用API”中,可以找到base_url和chat_model,如下:

base_url = https://api.deepseek.com/v1

chat_model='deepseek-chat'

 其他平台与deepseek的获取方式差不多

3、配置模型参数

        base_url和chat_model直接定义即可,但api key是关乎着模型是否能够使用的,所以尽量不要把其暴露在模型定理里面,而是把他添加到环境变量里,这里介绍两种方法添加环境变量。

方法一:终端中临时将加入

        在终端中临时将token加入变量,此时该环境变量只在当前终端内有效 !!!所以该种方法需要我们在该终端中运行我们的py脚本。

export api_key="填入你的api token"

        若是想永久加入环境变量,可以对 ~/.bashrc 文件中添加以下内容并保存。

export api_key="填入你的api token"

        此时在代码中获取api 只需要在Python脚本中添加以下代码即可

import os
api_key = os.getenv('api_key')
base_url = "https://api.deepseek.com/v1"
chat_model = "deepseek-chat"

方法二:创建.env文件

        终端输入命令临时创建也比较麻烦,而且只在当前终端内有效,而创建.env文件存储api_key则不存在这种问题。

        首先创建.env文件,然后输入以下内容,记得替换成你的token

api_key="your api_key"

同一路径下创建脚本文件,然后在代码中添加以下内容

import os
from dotenv import load_dotenv# 加载.env文件中的环境变量
load_dotenv()# 获取特定的环境变量
api_key = os.getenv('api_key')base_url = "https://api.deepseek.com/v1"
chat_model = "deepseek-chat"

4、 配置client

         有了前面的三个参数,我们就可以构造一个client,构造client只需要两个东西:api_key和base_url。

from openai import OpenAI
client = OpenAI(api_key = api_key,base_url = base_url
)

5、利用deepseek大模型实现简易问答

我们这里使用第二种方式定义api_key,创建.env文件存储api_key后,在.env同一目录下创建脚本文件,填入以下代码:

import os
from dotenv import load_dotenv
from openai import OpenAI
# 加载环境变量
load_dotenv()
# 从环境变量中读取api_key
api_key = os.getenv('api_key')
base_url = "https://api.deepseek.com/v1"
chat_model = "deepseek-chat"client = OpenAI(api_key = api_key,base_url = base_url
)

        有了这个client,我们就可以去实现各种能力了。

举个简单例子测试一下模型是否配置成功,配置好api的token后,输入以下代码

import os
from dotenv import load_dotenv
from openai import OpenAI# 加载环境变量
load_dotenv()# 从环境变量中读取api_key
api_key = os.getenv('api_key')
base_url = "https://api.deepseek.com/v1"
chat_model = "deepseek-chat"client = OpenAI(api_key=api_key,base_url=base_url
)try:# 发送一个简单的消息到模型response = client.chat.completions.create(model=chat_model,messages=[{"role": "system", "content": "你是一个乐于助人的AI助手,能够帮助用户解决各种专业问题."},{"role": "user", "content": "你好,介绍下你自己"}])# 打印模型的回复print("Model response:")print(response.choices[0].message.content)
except Exception as e:print(f"An error occurred: {e}")

结果如下:

         证明配置成功,如果没有回应,检查API key是否配置对了,如果对了可能是平台服务器的原因,等服务器恢复正常就好了

http://www.lryc.cn/news/528006.html

相关文章:

  • LeetCode题练习与总结:最短无序连续子数组--581
  • 探秘 TCP TLP:从背景到实现
  • linux学习之网络编程
  • scrol家族 offset家族 client家族学习
  • css-background-color(transparent)
  • 如何将xps文件转换为txt文件?xps转为pdf,pdf转为txt,提取pdf表格并转为txt
  • 【Samba】Ubuntu20.04 Windows 共享文件夹
  • gradle和maven的区别以及怎么选择使用它们
  • 360大数据面试题及参考答案
  • Myeclipse最新版本 C1 2019.4.0
  • MySQL 9.2.0 的功能
  • 接口 V2 完善:分布式环境下的 WebSocket 实现与 Token 校验
  • 微前端架构在前端开发中的实践与挑战
  • 【自学嵌入式(6)天气时钟:软硬件准备、串口模块开发】
  • macbook安装go语言
  • 代码随想录算法训练营第三十八天-动态规划-完全背包-322. 零钱兑换
  • 小阿卡纳牌
  • DDD 和 TDD
  • Java学习教程,从入门到精通,JDBC插入记录语法及案例(104)
  • Linux文件基本操作
  • React 路由导航与传参详解
  • C#面试常考随笔6:ArrayList和 List的主要区别?
  • C#分页思路:双列表数据组合返回设计思路
  • 中科大:LLM检索偏好优化应对RAG知识冲突
  • 知识库管理系统提升企业知识价值与工作效率的实践路径分析
  • 中文输入法方案
  • 《AI芯片:如何让硬件与AI计算需求完美契合》
  • AlertDialog组件的功能与用法
  • 【Python百日进阶-Web开发-FastAPI】Day813 - FastAPI 响应模型
  • 洛谷U525376 信号干扰 (判断多个区间是否有重叠)