当前位置: 首页 > news >正文

積分方程與簡單的泛函分析8.具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程

1)def求解具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程

K(x,y) 是定义在[a,b]\times[a,b]上的连续对称核函数,

非齐次第二类弗雷德霍姆积分算子方程的形式为:

\varphi(x)=f(x)+\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

其中\varphi(x)是未知函数,f(x)是给定的连续函数,\lambda是参数。

2)def其特徵值是否一致收斂
定义:

对于由连续对称核K(x,y)生成的积分算子T

其特征值序列\{\lambda_n\}若满足对于任意的\epsilon>0

存在N\in\mathbb{N},使得当n,m > N时,对于所有x\in[a,b]

都有|\lambda_n - \lambda_m|<\epsilon,则称特征值序列\{\lambda_n\}一致收敛。

证明:

由希尔伯特 - 施密特定理,对于由连续对称核K(x,y)定义的积分算子T

存在由特征向量 \{\varphi_n\}构成的L^2[a,b]的标准正交基,

对应的特征值\{\lambda_n\}满足 \lim_{n\rightarrow\infty}\lambda_n = 0

T是紧自伴算子,其特征值\lambda_n满足|\lambda_1|\geq|\lambda_2|\geq\cdots

对于任意\epsilon > 0,因为\lim_{n\rightarrow\infty}\lambda_n = 0

存在N,使得当n > N时,|\lambda_n|<\frac{\epsilon}{2}

那么对于n,m > N,有 |\lambda_n-\lambda_m|\leq|\lambda_n| + |\lambda_m|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon

所以特征值序列\{\lambda_n\}一致收敛到 0。

其柯西判斷

柯西准则:对于序列\{\lambda_n\}

它收敛的充要条件是对于任意的\epsilon>0,存在N\in\mathbb{N}

使得当n,m > N时,|\lambda_n - \lambda_m|<\epsilon

在特征值序列的情况下,前面已证明其满足柯西准则,所以特征值序列收敛。

3)def具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程,要麼對所有連續函數f有解,要麼齊次方程有平凡解
证明思路:

设非齐次方程\varphi(x)=f(x)+\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

对应的齐次方程为\varphi(x)=\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

由希尔伯特 - 施密特定理,积分算子T(T\varphi)(x)=\int_{a}^{b}K(x,y)\varphi(y)dy)是紧自伴算子,

存在标准正交基\{\varphi_n\}和特征值\{\lambda_n\}

假设齐次方程仅有平凡解,即对于\lambda不是特征值时,

齐次方程\varphi(x)-\lambda\int_{a}^{b}K(x,y)\varphi(y)dy = 0只有解\varphi(x)=0

对于非齐次方程,将\varphi(x)f(x)按特征向量展开:

\varphi(x)=\sum_{n = 1}^{\infty}a_n\varphi_n(x)f(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)

其中a_n=\langle\varphi,\varphi_n\rangleb_n=\langle f,\varphi_n\rangle

代入非齐次方程可得:\sum_{n = 1}^{\infty}a_n\varphi_n(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)+\lambda\sum_{n = 1}^{\infty}a_n\lambda_n\varphi_n(x)

比较系数得a_n(1 - \lambda\lambda_n)=b_n

因为\lambda 不是特征值,1-\lambda\lambda_n\neq0,所以a_n=\frac{b_n}{1 - \lambda\lambda_n},从而非齐次方程有解。

反之,若齐次方程有非平凡解,

即存在非零解\varphi(x)使得 \varphi(x)=\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

那么对于某些f(x),非齐次方程可能无解。

例如,若f(x)与齐次方程非平凡解的正交补空间不匹配时,非齐次方程无解。

4)计算例题

考虑积分方程\varphi(x)=x+\lambda\int_{0}^{1}(xy)\varphi(y)dy,这里 K(x,y)=xy是连续对称核,f(x)=x

\varphi(x)=\sum_{n = 1}^{\infty}a_n\varphi_n(x)f(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)

先求积分算子 T(T\varphi)(x)=\int_{0}^{1}(xy)\varphi(y)dy)的特征值和特征向量。

\varphi(x)是特征函数,\lambda是特征值,则 \varphi(x)=\lambda\int_{0}^{1}(xy)\varphi(y)dy

\varphi(x)=Ax^m,代入得Ax^m=\lambda A\int_{0}^{1}y^{m + 1}dyx=\lambda A\frac{1}{m + 2}x

所以m = 1\varphi(x)=AxA=\lambda A\frac{1}{3},解得特征值\lambda_1 = 3,特征向量 \varphi_1(x)=x

\varphi(x)=a_1xf(x)=x代入原非齐次方程:

a_1x=x+\lambda a_1\int_{0}^{1}(xy)ydy

计算 \int_{0}^{1}(xy)ydy=\frac{1}{3}x,则 a_1x=x+\frac{1}{3}\lambda a_1x

整理得a_1(1-\frac{1}{3}\lambda)=1

\lambda\neq3 时,a_1=\frac{1}{1-\frac{1}{3}\lambda}

所以\varphi(x)=\frac{1}{1 - \frac{1}{3}\lambda}x是方程的解。

\lambda = 3 时,齐次方程\varphi(x)=3\int_{0}^{1}(xy)\varphi(y)dy有非平凡解\varphi(x)=x

此时原非齐次方程对于 f(x)=x无解(因为代入后会出现矛盾)。

http://www.lryc.cn/news/526503.html

相关文章:

  • 长理算法复习
  • 机器学习-K近邻算法
  • 使用rsync+inotify简单实现文件实时双机双向同步
  • Ubuntu 24.04 LTS开机自启动脚本设置方法
  • 谈谈对JavaScript 中的事件冒泡(Event Bubbling)和事件捕获(Event Capturing)的理解
  • 解读2025年生物医药创新技术:展览会与论坛的重要性
  • 【第七天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-一种常见的分治算法(持续更新)
  • Spring Data JPA 实战:构建高性能数据访问层
  • Python JSON:深入解析与高效应用
  • 【C语言进阶(四)】指针进阶详解(上)
  • DDD架构实战第五讲总结:将领域模型转化为代码
  • FPGA实现任意角度视频旋转(完结)视频任意角度旋转实现
  • CPU 缓存基础知识
  • 微信小程序date picker的一些说明
  • Vue3 + TS 实现批量拖拽 文件夹和文件 组件封装
  • 【Kubernetes】Pod生命周期、初始化容器、主容器
  • 2025牛客寒假训练营1-M题
  • css3 svg制作404页面动画效果HTML源码
  • 序列标注:从传统到现代,NLP中的标签预测技术全解析
  • 软件测试 —— 性能测试(jmeter)
  • python介绍ransac算法拟合圆
  • WPS计算机二级•表格保护与打印
  • Vue组件开发-使用xlsx库导出Excel文件
  • 使用 Pipeline 提高 Redis 批量操作性能
  • 「 机器人 」利用冲程对称性调节实现仿生飞行器姿态与方向控制
  • 第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组
  • 本地大模型编程实战(02)语义检索(1)
  • 自定义命令执行器:C++中命令封装的深度探索(C/C++实现)
  • C语言程序设计十大排序—选择排序
  • C语言初阶牛客网刷题——HJ73 计算日期到天数转换【难度:简单】