当前位置: 首页 > news >正文

OpenCV:在图像中添加高斯噪声、胡椒噪声

目录

在图像中添加高斯噪声

高斯噪声的特性

添加高斯噪声的实现

给图像添加胡椒噪声

实现胡椒噪声的步骤


相关阅读

OpenCV:图像处理中的低通滤波-CSDN博客

OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯-CSDN博客

OpenCV:图像滤波、卷积与卷积核-CSDN博客


在图像中添加高斯噪声

高斯噪声是一种常见的噪声类型,其特性是噪声值服从正态分布(Gaussian distribution)。在图像处理中,添加高斯噪声可以用于测试算法的抗噪性能或生成合成数据。

高斯噪声的特性

高斯噪声的数学公式如下:

f(x) = \frac{1}{\sqrt{2\Pi \sigma^{2}}} e ^ -\frac{(x - \mu ) ^ 2}{ 2 \sigma ^2}

其中:μ 为均值,决定噪声的中心值,σ 为标准差,决定噪声的强度。

在图像中,添加高斯噪声通常需要在每个像素值上叠加服从高斯分布的随机值。


添加高斯噪声的实现

以下是使用 Python 和 OpenCV 给图像添加高斯噪声的步骤。

示例代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\huaji.jpg")
image = cv2.resize(image, (400, 400))  # 调整大小方便显示# 将图像转换为浮点型
image_float = image.astype(np.float32) / 255.0# 定义高斯噪声参数
mean = 0          # 噪声的均值
stddev = 0.1      # 噪声的标准差# 生成高斯噪声
gaussian_noise = np.random.normal(mean, stddev, image_float.shape)# 将噪声添加到图像
noisy_image = image_float + gaussian_noise# 将结果裁剪到 [0, 1] 范围
noisy_image = np.clip(noisy_image, 0, 1)# 转换回 0-255 范围并转换为 uint8 类型
noisy_image = (noisy_image * 255).astype(np.uint8)# 显示结果
cv2.imshow("image", image)
cv2.imshow("noisy", noisy_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

参数说明

  • mean: 高斯噪声的均值,通常设为 0。
  • stddev: 高斯噪声的标准差,值越大,噪声越明显。
  • np.random.normal: 用于生成服从正态分布的随机噪声。
  • np.clip: 确保像素值仍然在 [0, 1] 或 [0, 255] 的合法范围内。

运行效果


给图像添加胡椒噪声

胡椒噪声 是一种常见的二值噪声类型,与 盐噪声 搭配使用通常称为 椒盐噪声。它会在图像中随机生成黑点,模拟传感器故障或数据传输中的错误。

胡椒噪声的特性

  • 胡椒噪声:像素值变为 黑色(0)。
  • 与 盐噪声(白色点,像素值为 255) 不同,胡椒噪声专注于图像中的随机黑点。

实现胡椒噪声的步骤

以下是添加胡椒噪声的 Python 代码,基于 OpenCV 和 NumPy 实现。

示例代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\huaji.jpg")
image = cv2.resize(image, (400, 400))  # 调整大小方便显示# 定义胡椒噪声的比例
pepper_prob = 0.02  # 噪声比例(例如 2%)# 创建随机矩阵
random_matrix = np.random.rand(*image.shape)# 在随机矩阵中将小于噪声比例的点设置为 0(胡椒噪声)
pepper_noise = image.copy()
pepper_noise[random_matrix < pepper_prob] = 0# 显示结果
cv2.imshow("Image", image)
cv2.imshow("Noise", pepper_noise)
cv2.waitKey(0)
cv2.destroyAllWindows()

参数说明

  • pepper_prob: 控制胡椒噪声的密度(比例),值越大,黑点越多。
  • np.random.rand(*gray_image.shape): 生成与图像相同大小的随机矩阵。
  • pepper_noise[random_matrix < pepper_prob] = 0: 将随机矩阵中小于阈值的位置设置为黑色(0)。

运行效果

胡椒噪声通过在图像中引入黑点,模拟了现实中的噪声情况。结合降噪算法(如中值滤波)可以有效去除此类噪声,提高图像质量。通过调整噪声比例,可以测试算法在不同噪声强度下的表现。

http://www.lryc.cn/news/526163.html

相关文章:

  • DuckDB:Golang操作DuckDB实战案例
  • MySQL入门(数据库、数据表、数据、字段的操作以及查询相关sql语法)
  • kotlin的协程的基础概念
  • Spring--SpringMVC使用(接收和响应数据、RESTFul风格设计、其他扩展)
  • 隐藏php版本信息x-powered-by
  • 哈夫曼树(构建、编码、译码)(详细分析+C++代码实现)
  • C++ 二叉搜索树
  • docker构建Java项目镜像常用的Java版本,国内私有仓库公网快速下载,解决从docker.io无法下载的问题
  • 低代码系统-氚云、简道云表单控件对比
  • 为什么IDEA提示不推荐@Autowired❓️如果使用@Resource呢❓️
  • Unity在WebGL中拍照和录视频
  • 爬虫基础之爬取某站视频
  • mongoDB常见指令
  • 人工智能之深度学习_[5]-神经网络优化学习率衰减优化正则化方法
  • Oracle之Merge into函数使用
  • 深度解析:哪种心磁图技术是心脏检查的精准之选?
  • SpringBoot--基本使用(配置、整合SpringMVC、Druid、Mybatis、基础特性)
  • 单片机-STM32 IIC通信(OLED屏幕)(十一)
  • 观察者模式 - 观察者模式的应用场景
  • 【C++】详细讲解继承(下)
  • 消息队列篇--原理篇--Pulsar(Namespace,BookKeeper,类似Kafka甚至更好的消息队列)
  • 扬帆数据结构算法之舟,启航C++探索征途——LeetCode深度磨砺:顺序表技术精进实践
  • 基于本地事务表+MQ实现分布式事务
  • 数据结构:二叉树—面试题(一)
  • 【Wordpress网站制作】切换语言的问题
  • 【第二天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-五种常见的排序算法(持续更新)
  • Neural networks 神经网络
  • 汽车免拆诊断案例 | 2007 款日产天籁车起步加速时偶尔抖动
  • 代码随想录day3
  • Spring 面试题【每日20道】【其一】