当前位置: 首页 > news >正文

python学opencv|读取图像(四十二)使用cv2.add()函数实现多图像叠加

【1】引言

前序学习过程中,掌握了灰度图像和彩色图像的掩模操作:

python学opencv|读取图像(九)用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客

python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖-CSDN博客

也受此启发,尝试直接使用cv2.add()函数让两张图片进行叠加:

python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加-CSDN博客

在此基础上,我们如果进一步尝试,就可以对3张图片进行叠加。

比如,我们已经知晓彩色三通道图像的每一个通道都可以单独设置对应BGR值,它们叠加的效果是新的彩色图像。实际上,这种叠加效果我们早期在没有使用cv2.add()函数的时候,已经悄然获得了:

python学opencv|读取图像(十)用numpy创建彩色图像_cv2 通过numpy创建图像-CSDN博客

此时,在已经、学习了cv2.add()函数的基础上,我们可以进一步验证。

【2】可行性分析

【2.1】未使用cv.add()函数

在python学opencv|读取图像(十)用numpy创建彩色图像_cv2 通过numpy创建图像-CSDN博客文章中,使用的代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv2模块
from imageio.v2 import imwrite# 定义图像
t = np.arange(300, 600, 20)  # 定义变量,在[300,600)区间,每隔20取一个值
t_max = np.max(t)  # 取变量最大值作为像素大小
print('t_max=', t_max)  # 输出最大值
image = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image[:, :, 0] = 155  # 第一个通道值
image[:, :, 1] = 200  # 第二个通道值
image[:, :, 2] = 255  # 第三个通道值# 显示和保存定义的图像
cv.imshow('display-pho', image)  # 显示图像
cv.imwrite('gray-pho-3.png', image)  # 保存图像
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

这其中的核心代码段,有一个逐层覆盖和叠加的效果:

image[:, :, 0] = 155  # 第一个通道值
image[:, :, 1] = 200  # 第二个通道值
image[:, :, 2] = 255  # 第三个通道值

【2.2】使用cv.add()函数

为验证使用add()函数的叠加效果,在上述代码后面补充一段代码:

image1 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image1[:, :, 0] = 155  # 第一个图像
image2 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image2[:, :, 1] = 200  # 第二个图像
image3 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image3[:, :, 2] = 255  # 第三个图像
img=cv.add(image1,image2) # 第一和第二图像叠加
cv.imshow('display-12', img)  # 显示图像
cv.imwrite('gray-pho-12.png', img)  # 保存图像
img=cv.add(img,image3) # 第一、第二和第三图像叠加
cv.imshow('display-123', img)  # 显示图像
cv.imwrite('gray-pho-123.png', img)  # 保存图像

运行代码后,获得的图像为:

图1 gray-pho-3.png-未使用add()函数

图2 gray-pho-123.png-使用add()函数 

由图1和图2可见,无论是否使用add()函数,图像叠加的本质都是各个通道的BGR值对应相加,获得的图像效果是一样的。

此外,中间的过渡图像,也就是image1[:, :, 0] = 155和image1[:, :,1] = 200叠加后的图像为:

图3 gray-pho-12.png-使用add()函数

【2.3】使用cv.add()函数+掩模效果

在前述的两个测试中,使用的图像叠加都没有尝试掩模效果。

但add()函数本身允许添加一个mask参数来做掩模效果,为验证掩模效果,继续增加下述代码:

#验证掩模效果
mask=np.zeros((t_max, t_max,1),np.uint8)   # 定义一个竖直和水平像素均为t_max的全0矩阵
mask[20:300, 200:500, ] = 200  # 第二个图像
cv.imshow('display-mask', mask)  # 显示图像
cv.imwrite('gray-pho-mask.png',mask)  # 保存图像
img=cv.add(image1,image2,mask=mask) # 第一和第二图像叠加
cv.imshow('display-12-mask', img)  # 显示图像
cv.imwrite('gray-pho-12-mask.png', img)  # 保存图像

这里应用掩模效果的核心代码为:

img=cv.add(image1,image2,mask=mask) # 第一和第二图像叠加

代码运行后的掩模效果为:

图4 gray-pho-12-mask.png-使用add()函数

由图4可见,图像只在使用掩模的区域进行了效果叠加,其他区域仍然保留了全0矩阵对应的纯黑色画布特点。

因为刚好掩模的矩阵赋值也是200,和image2的通道赋值一样,为进一步测试,把这个掩模的矩阵赋值改到255,增加下述代码:

mask1=np.zeros((t_max, t_max,1),np.uint8)   # 定义一个竖直和水平像素均为t_max的全0矩阵
mask1[20:300, 200:500, ] = 255  # 第二个图像
cv.imshow('display-mask', mask1)  # 显示图像
cv.imwrite('gray-pho-mask.png',mask1)  # 保存图像
img=cv.add(image1,image2,mask=mask1) # 第一和第二图像叠加
cv.imshow('display-123-mask', img)  # 显示图像
cv.imwrite('gray-pho-123-mask.png', img)  # 保存图像

此时获得的图像为:

图5 gray-pho-mask.png-掩模

图6 gray-pho-123-mask.png-使用add()函数+掩模

可见,使用掩模效果后,图像依然是image1+image2的效果,且只在掩模控制的区域显示这个叠加效果。

此时的完整代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv2模块
from imageio.v2 import imwrite# 定义图像
t = np.arange(300, 600, 20)  # 定义变量,在[300,600)区间,每隔20取一个值
t_max = np.max(t)  # 取变量最大值作为像素大小
print('t_max=', t_max)  # 输出最大值
image = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image[:, :, 0] = 155  # 第一个通道值
image[:, :, 1] = 200  # 第二个通道值
image[:, :, 2] = 255  # 第三个通道值# 显示和保存定义的图像
cv.imshow('display-pho', image)  # 显示图像
cv.imwrite('gray-pho-3.png', image)  # 保存图像image1 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image1[:, :, 0] = 155  # 第一个图像
image2 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image2[:, :, 1] = 200  # 第二个图像
image3 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image3[:, :, 2] = 255  # 第三个图像
img=cv.add(image1,image2) # 第一和第二图像叠加
cv.imshow('display-12', img)  # 显示图像
cv.imwrite('gray-pho-12.png', img)  # 保存图像
img=cv.add(img,image3) # 第一、第二和第三图像叠加
cv.imshow('display-123', img)  # 显示图像
cv.imwrite('gray-pho-123.png', img)  # 保存图像#验证掩模效果
mask=np.zeros((t_max, t_max,1),np.uint8)   # 定义一个竖直和水平像素均为t_max的全0矩阵
mask[20:300, 200:500, ] = 200  # 第二个图像
cv.imshow('display-mask', mask)  # 显示图像
cv.imwrite('gray-pho-mask.png',mask)  # 保存图像
img=cv.add(image1,image2,mask=mask) # 第一和第二图像叠加
cv.imshow('display-12-mask', img)  # 显示图像
cv.imwrite('gray-pho-12-mask.png', img)  # 保存图像mask1=np.zeros((t_max, t_max,1),np.uint8)   # 定义一个竖直和水平像素均为t_max的全0矩阵
mask1[20:300, 200:500, ] = 255  # 第二个图像
cv.imshow('display-mask', mask1)  # 显示图像
cv.imwrite('gray-pho-mask.png',mask1)  # 保存图像
img=cv.add(image1,image2,mask=mask1) # 第一和第二图像叠加
cv.imshow('display-123-mask', img)  # 显示图像
cv.imwrite('gray-pho-123-mask.png', img)  # 保存图像cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

【3】总结

掌握了使用python+opencv实现使用cv2.add()函数进行多图像叠加的技巧,并探索了掩模的影响。

http://www.lryc.cn/news/526063.html

相关文章:

  • 速通Docker === Docker Compose
  • LMI Gocator GO_SDK VS2019引用配置
  • 技术之翼,创作之心
  • WebSocket异步导出
  • OS2.【Linux】基本命令入门(1)
  • 【二叉树】4. 判断一颗二叉树是否是平衡二叉树。5. 对称二叉树。6. 二叉树的构建及遍历 7. 二叉树的分层遍历 。
  • OS Copilot功能测评:智能助手的炫彩魔法
  • MFC结构体数据文件读写实例
  • 音频 PCM 格式 - raw data
  • 关于deepin上运行Qt开发的程序
  • css 如何将字体进行压扁,即水平缩放scaleX
  • C++AVL树(二)详解
  • RocketMQ 的 Topic 和消息队列MessageQueue信息,是怎么分布到Broker的?怎么负载均衡到Broker的?
  • 无人机核心项目开发系列:从设计到实现的完整解析
  • 浅谈Redis
  • Ceisum无人机巡检直播视频投射
  • 【组件库】使用Vue2+AntV X6+ElementUI 实现拖拽配置自定义vue节点
  • Vue.js组件开发-如何实现全选反选
  • 2025.1.20——四、[强网杯 2019]Upload1 文件上传|反序列化
  • php代码审计2 piwigo CMS in_array()函数漏洞
  • docker搭建redis集群(三主三从)
  • [Datawheel]利用Zigent框架编写智能体-1
  • 【计算机视觉】人脸识别
  • linux环境变量配置文件区别 /etc/profile和~/.bash_profile
  • mac 配置 python 环境变量
  • 终极的复杂,是简单
  • 软件开发中的密码学(国密算法)
  • 【豆包MarsCode 蛇年编程大作战】蛇形烟花
  • Jmeter使用Request URL请求接口
  • 使用Pytest Fixtures来提升TestCase的可读性、高效性