当前位置: 首页 > news >正文

Spark Streaming编程基础

文章目录

  • 1. 流式词频统计
    • 1.1 Spark Streaming编程步骤
    • 1.2 流式词频统计项目
      • 1.2.1 创建项目
      • 1.2.2 添加项目依赖
      • 1.2.3 修改源目录
      • 1.2.4 添加scala-sdk库
      • 1.2.5 创建日志属性文件
    • 1.3 创建词频统计对象
    • 1.4 利用nc发送数据
    • 1.5 启动应用,查看结果
  • 2. 编程模型的基本概念
  • 3. 离散化数据流
  • 4. 基本数据源
  • 5. 基本DStream转换操作
  • 6. DStream输出操作

1. 流式词频统计

  • 本实战演示了如何使用 Spark Streaming 实现实时词频统计。通过创建 Spark Streaming 项目,添加依赖,编写 Scala 代码,监听网络端口接收数据流,并按批次处理数据。利用 nc 工具发送数据,程序每10秒统计一次词频并输出结果。该示例展示了 Spark Streaming 的微批处理特性,适用于实时数据处理场景。

1.1 Spark Streaming编程步骤

  1. 添加SparkStreaming相关依赖
  2. 获取程序入口接收数据
  3. 对数据进行业务处理
  4. 获取最终结果
  5. 启动程序等待程序执行结束

1.2 流式词频统计项目

1.2.1 创建项目

  • 设置项目基本信息
    在这里插入图片描述
  • 单击【Create】按钮,生成项目基本骨架
    在这里插入图片描述

1.2.2 添加项目依赖

  • pom.xml文件里添加依赖
    在这里插入图片描述
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>net.huawei.streaming</groupId><artifactId>SparkStreamingDemo</artifactId><version>1.0-SNAPSHOT</version><properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.3.0</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.3.0</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.3.0</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.13.2</version></dependency></dependencies></project>
  • 刷新项目依赖
    在这里插入图片描述

1.2.3 修改源目录

  • java修改为scala
    在这里插入图片描述

  • pom.xml里设置源目录
    在这里插入图片描述

1.2.4 添加scala-sdk库

  • 在项目结构对话里添加
    在这里插入图片描述
  • 单击【Add to Modules】菜单项
    在这里插入图片描述
  • 单击【OK】按钮以后,就可以在scala里创建Scala Class
    在这里插入图片描述

1.2.5 创建日志属性文件

  • resources里创建log4j2.properties文件
    在这里插入图片描述
rootLogger.level = ERROR
rootLogger.appenderRef.stdout.ref = consoleappender.console.type = Console
appender.console.name = console
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = %d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n%ex

1.3 创建词频统计对象

  • 创建net.huawei.streaming
    在这里插入图片描述
  • net.huawei.streaming包里创建SparkStreamingWordCount对象
    在这里插入图片描述
package net.huawei.streamingimport org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}/*** 功能:流式词频统计* 作者:华卫* 日期:2025年01月23日*/
object SparkStreamingWordCount {def main(args: Array[String]): Unit = {// 创建SparkConf对象,2个线程,本地运行val conf: SparkConf = new SparkConf().setMaster("local[2]").setAppName("SparkStreamingWordCount")// 创建StreamingContext对象,10秒一个批次val ssc: StreamingContext = new StreamingContext(conf, Seconds(10))// 创建ReceiverInputDStream对象接收来自网络端口的数据val lines: ReceiverInputDStream[String] = ssc.socketTextStream("bigdata1", 9999)// lines中每条数据按照空格进行切分然后扁平化处理val words: DStream[String] = lines.flatMap(_.split(" "))// words中每条数据转换成(word,1)二元组val wordmap: DStream[(String, Int)] = words.map(word => (word, 1))// wordmap中每条数据按key分组,按value进行累加求和val wordcount: DStream[(String, Int)] = wordmap.reduceByKey(_ + _)// 打印词频统计结果 wordcount.print()// 启动实时流程序ssc.start()// 等待实时流程序结束ssc.awaitTermination()}
}
  • 代码说明:这段代码实现了一个基于Spark Streaming的实时词频统计程序。它通过监听指定端口(bigdata1:9999)接收数据流,将每行数据按空格切分并扁平化为单词,然后统计每个单词的出现次数。程序每10秒处理一个批次的数据,并打印词频统计结果。代码结构清晰,适用于实时数据处理场景。

1.4 利用nc发送数据

  • bigdata1节点利用nc发送数据,执行命令:nc -lp 9999
    在这里插入图片描述

1.5 启动应用,查看结果

  • 启动SparkStreamingWordCount对象,在bigdata1节点上输入数据,在控制台查看词频统计结果
    在这里插入图片描述
  • 结果说明:Spark Streaming 采用微批处理,每批次数据独立处理,批次间不共享状态或共同计数。默认情况下,批次间数据互不影响。如需跨批次状态管理,可使用 updateStateByKeymapWithState 实现累加计数等功能。这种设计确保了流数据处理的灵活性和高效性。

2. 编程模型的基本概念

3. 离散化数据流

4. 基本数据源

5. 基本DStream转换操作

6. DStream输出操作

http://www.lryc.cn/news/525459.html

相关文章:

  • 深入 Flutter 和 Compose 的 PlatformView 实现对比,它们是如何接入平台控件
  • C# OpenCV机器视觉:红外体温检测
  • FCA-FineDataLink认证
  • 第19篇:python高级编程进阶:使用Flask进行Web开发
  • js截取video视频某一帧为图片
  • [云讷科技]Kerloud Falcon四旋翼飞车虚拟仿真空间发布
  • Jetson nano 安装 PCL 指南
  • go-zero框架基本配置和错误码封装
  • Android中Service在新进程中的启动流程2
  • 论文速读|Matrix-SSL:Matrix Information Theory for Self-Supervised Learning.ICML24
  • ubunut22.04安装docker(基于阿里云 Docker 镜像源安装 Docker)
  • k8s namespace绑定节点
  • 【ElementPlus】在Vue3中实现表格组件封装
  • cursor重构谷粒商城04——vagrant技术快速部署虚拟机
  • 26、正则表达式
  • SpringBoot使用MockMVC通过http请求controller控制器调用测试
  • 【Unity3D】Unity混淆工具Obfuscator使用
  • C语言语法基础学习—动态分配空间(new和malloc的用法及区别)
  • QT:控件属性及常用控件(3)-----输入类控件(正则表达式)
  • Hive SQL 执行计划解析
  • 热更新杂乱记
  • 博客搭建 — GitHub Pages 部署
  • 翻译:How do I reset my FPGA?
  • Linux 进程环境变量:深入理解与实践指南
  • Linux探秘坊-------5.git
  • Linux中的几个基本指令(二)
  • Java入门笔记(1)
  • 设计模式的艺术-开闭原则
  • 【C语言系列】深入理解指针(3)
  • three.js+WebGL踩坑经验合集:写在前面的话