当前位置: 首页 > news >正文

PyTorch广告点击率预测(CTR)利用深度学习提升广告效果

目录

      • 广告点击率预测问题
      • 数据集结构
      • 广告点击率预测模型的构建
        • 1. 数据集准备
        • 2. 构建数据加载器
        • 3. 构建深度学习模型
        • 4. 训练与评估
      • 总结

广告点击率预测(CTR,Click-Through Rate Prediction)是在线广告领域中的重要任务,它帮助广告平台根据用户的兴趣预测广告的点击概率,从而提高广告投放的效果和广告商的收益。随着深度学习的快速发展,传统的广告点击率预测方法已逐渐被基于神经网络的模型所取代,深度学习在此领域的应用带来了显著的提升。

本文将通过实现一个简单的深度学习广告点击率预测模型,介绍如何利用PyTorch构建一个广告点击率预测系统。

广告点击率预测问题

广告点击率预测问题可以描述为:给定一组广告和用户的特征,预测用户点击该广告的概率。这类任务通常是一个二分类问题——用户点击广告与否,标签为1或0。

在广告点击率预测中,输入特征通常包括用户的历史行为、广告的特征(如广告类型、广告主题、展示位置等)以及用户的环境特征(如时间、设备等)。模型的任务是从这些特征中学习到有效的信息,并做出准确的预测。

数据集结构

为了实现广告点击率预测,我们假设数据集的结构如下:

用户ID广告ID时间戳用户年龄用户性别广告类型展示位置点击标签
110011609459200250视频首页1
210021609459260301图片侧边栏0
310031609459320220视频首页1
  • 用户ID:表示用户的唯一标识符。
  • 广告ID:表示广告的唯一标识符。
  • 时间戳:表示广告展示的时间。
  • 用户年龄:表示用户的年龄。
  • 用户性别:表示用户的性别,0为女性,1为男性。
  • 广告类型:表示广告的类型(如视频广告、图片广告等)。
  • 展示位置:表示广告展示的页面位置(如首页、侧边栏等)。
  • 点击标签:表示用户是否点击广告,1表示点击,0表示未点击。

在实际应用中,数据集会非常庞大,并且包含多种类型的特征。为了让模型能够处理这些特征,我们通常需要将分类特征(如性别、广告类型等)进行数值化或独热编码。

广告点击率预测模型的构建

1. 数据集准备

首先,我们需要一个包含广告和用户特征的数据集。这里我们假设数据集中包含多个特征列,最后一列为标签(点击与否)。我们将使用 pandas 来加载数据,利用 train_test_split 将数据分为训练集和测试集。

import pandas as pd
from sklearn.model_selection import train_test_split# 加载数据
def load_data(file_path):df = pd.read_csv(file_path)features = df.iloc[:, :-1].values  # 所有特征labels = df.iloc[:, -1].values     # 最后一列标签return features, labels
2. 构建数据加载器

我们使用PyTorch的 Dataset 类来构建自定义数据集,并利用 DataLoader 来批量加载数据。这样可以更高效地进行模型训练。

from torch.utils.data import Dataset, DataLoaderclass CTRDataset(Dataset):def __init__(self, features, labels):self.features = torch.tensor(features, dtype=torch.float32)self.labels = torch.tensor(labels, dtype=torch.float32)def __len__(self):return len(self.features)def __getitem__(self, idx):return self.features[idx], self.labels[idx]
3. 构建深度学习模型

在本例中,我们使用一个简单的多层感知机(MLP)模型。该模型由三个全连接层组成,通过ReLU激活函数进行非线性变换,最终输出一个介于0和1之间的概率值。

import torch.nn as nnclass CTRModel(nn.Module):def __init__(self, input_dim):super(CTRModel, self).__init__()self.fc1 = nn.Linear(input_dim, 128)  # 第一层self.fc2 = nn.Linear(128, 64)         # 第二层self.fc3 = nn.Linear(64, 1)           # 输出层self.sigmoid = nn.Sigmoid()           # 输出概率def forward(self, x):x = torch.relu(self.fc1(x))  # 激活函数 ReLUx = torch.relu(self.fc2(x))  # 激活函数 ReLUx = self.fc3(x)              # 输出层return self.sigmoid(x)       # 预测点击率概率
4. 训练与评估

我们使用二元交叉熵损失函数(BCELoss)和Adam优化器来训练模型。在每个epoch结束后,我们评估模型在测试集上的准确度。

import torch.optim as optim# 定义训练过程
def train(csv_file, num_epochs=10, lr=0.001):features, labels = load_data(csv_file)x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)# 创建数据加载器train_dataset = CTRDataset(x_train, y_train)test_dataset = CTRDataset(x_test, y_test)train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)# 初始化模型、损失函数和优化器input_dim = features.shape[1]model = CTRModel(input_dim)criterion = nn.BCELoss()  # 二元交叉熵损失函数optimizer = optim.Adam(model.parameters(), lr)# 训练过程model.train()for epoch in range(num_epochs):running_loss = 0.0for inputs, labels in train_loader:optimizer.zero_grad()outputs = model(inputs).squeeze(1)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')# 训练完成后,评估模型evaluate(model, test_loader)# 评估过程
def evaluate(model, val_loader):model.eval()  # 设置为评估模式correct = 0total = 0with torch.no_grad():for inputs, labels in val_loader:outputs = model(inputs).squeeze(1)predicted = (outputs >= 0.5).float()  # 将输出转化为0或1total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalprint(f'Accuracy: {accuracy:.4f}')

总结

通过这个简单的深度学习模型,我们实现了一个广告点击率预测系统。利用PyTorch,我们可以非常方便地构建神经网络模型,训练并进行评估。通过不断优化模型架构和特征工程,我们有可能进一步提升广告点击率的预测准确度。

随着广告行业的不断发展,点击率预测的需求将会越来越大,借助深度学习的强大能力,我们可以不断优化广告投放策略,达到更加精确的预测结果。希望本文的内容能为你搭建广告点击率预测系统提供帮助。

http://www.lryc.cn/news/524941.html

相关文章:

  • PAT甲级-1017 Queueing at Bank
  • OneData体系架构详解
  • Gin 框架入门实战系列教程
  • 鸿蒙harmony json转对象(2)
  • M-LAG与E-trunk
  • 【面试常见问题】
  • Spring Boot Starter介绍
  • vue和reacts数据响应式的差异
  • OpenEuler学习笔记(九):安装 OpenEuler后配置和优化
  • npm命令与yarn命令的区别
  • python如何导出数据到excel文件
  • MYSQL学习笔记(五):单行函数(字符串、数学、日期时间、条件判断、信息、加密、进制转换函数)讲解
  • Grafana系列之Dashboard:新增仪表板、新增变量、过滤变量、变量查询、导入仪表板、变量联动、Grafana Alert
  • (java版本)基于Misty1算法的加密软件的实现-毕业设计
  • Spring注解篇:@RestController详解
  • C++:将字符数组rkpryyrag,每个字母转换为其前面第13个字母后输出,如果超过a则从z再继续接着数。例如:b前面第1个字母是a。a前面第3个字母是x。
  • 《探秘鸿蒙Next:人工智能助力元宇宙高效渲染新征程》
  • 微前端qiankun的部署
  • HTML表格-掌握表格标签与属性
  • PID控制的优势与LabVIEW应用
  • 全球化趋势与中资企业出海背景
  • Oracle之RMAN备份异机恢复(单机到单机)
  • Servlet快速入门
  • 深入解析 Linux 内核中的 InfiniBand 驱动接口:ib_verbs.h
  • vulnhub靶场【kioptrix-1靶机】
  • Linux 6.14 内核的主要特性
  • 【Linux】深刻理解动静态库
  • 亚博microros小车-原生ubuntu支持系列:8-脸部检测与人脸特效
  • 代码随想录算法训练营day32
  • 缓存之美:万文详解 Caffeine 实现原理(下)