当前位置: 首页 > news >正文

dp 凸优化

时间有点仓促,过几天会补。
来自 czz 学长的课,SMWC -> Day4

目录

  • 凸函数介绍
  • WQS二分
    • 1. P2619【国家集训队 2】Tree I
    • 2. CF739E Gosha is hunting
  • 闵可夫斯基和
    • 1. QOJ-5421 Factories Once More
    • 2. GD 省集 tower
  • Slope Trick
    • 1. CF713C
    • 2. ABC217H
    • 3. [APIO2016] 烟火表演
  • 总结

凸函数介绍

凸函数即为一阶导单调的函数,在 OI 中通常体现为差分后单调的函数。这类具有凸性的问题在最优化问题中十分常见,通常具有其对应的线性规划或者费用流模型,也通常使用反悔贪心或者模拟费用流等方法解决。


WQS二分

详见 this 。
有一类问题,通常具有“选择恰好 k k k 个”的标志,但是在 d p dp dp 状态中记录 k k k 复杂度又太高,此时通常使用 WQS二分 解决。
WQS二分 使用的前提为问题关于选择个数 k k k 具有凸性。

1. P2619【国家集训队 2】Tree I

模板题

2. CF739E Gosha is hunting

凸性还可以联系到网络流,比如这题。
建立网络流模型,然后模拟网络流做法。 O ( n l o g n ) O(nlogn) O(nlogn)


闵可夫斯基和

( m i n , + ) (min, +) (min,+) ( m a x , + ) (max, +) (max,+) 卷积是常见的凸函数卷积,不难证明两个凸函数经过这样的卷积之后仍然是凸函数。(且这样的卷积常见于背包)
闵可夫斯基和常与分治等手段结合。

( m a x , + ) (max,+) (max,+) 卷积: f ( i ) = m a x j + k = i ( g ( j ) + h ( k ) ) f(i) = max_{j+k=i} (g(j) + h(k)) f(i)=maxj+k=i(g(j)+h(k))

1. QOJ-5421 Factories Once More

考虑 树形dp,设 f u , i f_{u,i} fu,i 表示 u u u 子树内选了 i i i 个点的最大值。容易得到 d p dp dp 转移方程, f u , i = m a x j + k = i f u , j + f v , k + j × k × w ( u , v ) f{u,i} = max_{j+k=i} f_{u,j} + f_{v,k} + j \times k \times w(u, v) fu,i=maxj+k=ifu,j+fv,k+j×k×w(u,v)
发现为凸函数,可以通过 ( m a x , + ) (max,+) (max,+) 卷积做成闵可夫斯基和的形式,进行加速 d p dp dp

2. GD 省集 tower

不会。
用闵可夫斯基和可以做到 O ( n l o g n ) O(nlogn) O(nlogn) ,但是分类讨论的常数可达 81 81 81 倍。


Slope Trick

Slope Trick 是一种优化 d p dp dp 的方法。核心思想是储存 d p dp dp 转移的关键信息(如分段函数的分界点)然后利用数据结构高效维护转移。
例如凸函数,我们只需维护初始的斜率,初始的值和斜率的变化点即可。
常见的维护操作有:函数相加,找最值,加一个一次函数,取前后缀max,平移,翻转等。

1. CF713C

经典模板题。

2. ABC217H

弄一个暴力 d p dp dp ,设 f i , j f_{i,j} fi,j 表示 T i T_i Ti 时刻角色在 j j j 可能的最小伤害,转移就枚举上一次在哪:
f i , j = m i n j k + l e n = j − l e n f i − 1 , k + [ ( j > X i ) = D i ] × ∣ j − X fi,j = minjk+len=j−lenfi−1,k + [(j > Xi) = Di] × |j − X fi,j=minjk+len=jlenfi1,k+[(j>Xi)=Di]×jX
事件的贡献是一个下凸函数,发现转移是一个先平移后加一个下凸函数的形式,不难验证仍然 fi 仍然是一个下凸函数。考虑用两个堆分别维护拐点。由于是下凸函数,则最小值的左边是单调递减,最小
值的右边是单调递增。则只需把维护最小值左边的拐点位置统一减去 len,最小值右边的拐点位置统一加上 len 即可。加上的函数很明显拐点只有一个 Xi,插入拐点然后维护堆的大
小即可。

3. [APIO2016] 烟火表演

又不会。

总结

===

http://www.lryc.cn/news/524821.html

相关文章:

  • 详细介绍:Kubernetes(K8s)的技术架构(核心概念、调度和资源管理、安全性、持续集成与持续部署、网络和服务发现)
  • [SAP ABAP] Dialog屏幕开发
  • 安全测试之 SSTI 模板注入入门
  • 滑动窗口解题模板
  • SOC和SOH的含义
  • Genetic Prompt Search via Exploiting Language Model Probabilities
  • 1561. 你可以获得的最大硬币数目
  • DNA结合之Motif_1:CNN
  • kong 网关和spring cloud gateway网关性能测试对比
  • 【2024 CSDN博客之星】个人收获分享
  • Codeforces Round 998 (Div. 3)(部分题解)
  • [创业之路-261]:《向流程设计要效率》-1-流程体系的建立是一场全方位的变革,一定会遇到各种阻力,需要全方位、系统性地进行流程管理
  • 深入理解 Spring 的 Lazy Loading:原理、实现与应用场景
  • 扬帆数据结构算法之雅舟航程,漫步C++幽谷——LeetCode刷题之移除链表元素、反转链表、找中间节点、合并有序链表、链表的回文结构
  • 【unity游戏开发之InputSystem——02】InputAction的使用介绍(基于unity6开发介绍)
  • Excel常用功能总结
  • 【go语言】变量和常量
  • Node.js——express中间件(全局中间件、路由中间件、静态资源中间件)
  • 大语言模型的语境中“越狱”和思维链
  • JAVA学习记录4
  • 手机网络性能测试仪器介绍
  • vue3+ts watch 整理
  • 【Elasticsearch入门到落地】6、索引库的操作
  • Java TCP可靠传输(1)
  • ipad和macbook同步zotero文献附件失败的解决办法
  • linux-ubuntu学习笔记碎记
  • RV1126+FFMPEG推流项目(11)编码音视频数据 + FFMPEG时间戳处理
  • 人工智能的出现,给生命科学领域的研究带来全新的视角|行业前沿·25-01-22
  • python注释格式总结
  • Django实现数据库的表间三种关系