当前位置: 首页 > news >正文

梯度提升决策树树(GBDT)公式推导

### 逻辑回归的损失函数

逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为:

\[ P(y = 1 | x) = \frac{1}{1 + e^{-F(x)}} \]

其中 \( F(x) \) 是一个线性组合函数,通常表示为:

\[ F(x) = \sum_{m=0}^{M} h_m(x) \]

这里的 \( h_m(x) \) 是学习到的决策树。

### 损失函数的推导

对于单个样本 \((x_i, y_i)\),逻辑回归的损失函数通常采用对数似然损失(也称为交叉熵损失),定义如下:

\[ \text{loss}(x_i, y_i) = -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i) \]

其中:
- \( \hat{y}_i \) 是模型预测的概率。
- \( y_i \) 是实际的标签(0 或 1)。

### GBDT 中的损失函数

在 GBDT 中,我们假设第 \( k \) 步迭代之后当前学习器为 \( F(x) \),则损失函数可以写为:

\[ \text{loss}(x_i, y_i | F(x)) = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \]

### 推导步骤

1. **定义预测概率**:
   \[ \hat{y}_i = \frac{1}{1 + e^{-F(x_i)}} \]

2. **代入损失函数**:
   \[ \text{loss}(x_i, y_i) = -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i) \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-F(x_i)}}\right) \]

3. **简化表达式**:
   \[ \text{loss}(x_i, y_i) = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \log \left(\frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}}\right) \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \left[\log(e^{-F(x_i)}) - \log(1 + e^{-F(x_i)})\right] \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \left[-F(x_i) - \log(1 + e^{-F(x_i)})\right] \]
   \[ = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \]

求梯度

为了求出给定损失函数的梯度,我们需要对损失函数关于 \( F(x_i) \) 求导。给定的损失函数是:

\[
\text{loss}(x_i, y_i | F(x)) = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right]
\]

我们分两部分来计算梯度:

1. 对于第一部分 \( y_i \log \left(1 + e^{-F(x_i)}\right) \)
2. 对于第二部分 \( (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \)

### 第一部分的梯度

对于 \( y_i \log \left(1 + e^{-F(x_i)}\right) \),我们对其求导:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) \right]
\]

使用链式法则:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) \right] = y_i \cdot \frac{\partial}{\partial F(x_i)} \left[ \log \left(1 + e^{-F(x_i)}\right) \right]
\]

\[
= y_i \cdot \frac{1}{1 + e^{-F(x_i)}} \cdot (-e^{-F(x_i)})
\]

\[
= y_i \cdot \frac{-e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

### 第二部分的梯度

对于 \( (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \),我们对其求导:

\[
\frac{\partial}{\partial F(x_i)} \left[ (1 - y_i) \left(F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right) \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{\partial}{\partial F(x_i)} F(x_i) + \frac{\partial}{\partial F(x_i)} \log \left(1 + e^{-F(x_i)}\right) \right]
\]

\[
= (1 - y_i) \cdot \left[ 1 + \frac{1}{1 + e^{-F(x_i)}} \cdot (-e^{-F(x_i)}) \right]
\]

\[
= (1 - y_i) \cdot \left[ 1 - \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{1 + e^{-F(x_i)} - e^{-F(x_i)}}{1 + e^{-F(x_i)}} \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{1}{1 + e^{-F(x_i)}} \right]
\]

### 合并两部分

将两部分合并起来:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \right]
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} + (1 - y_i) \cdot \frac{1}{1 + e^{-F(x_i)}}
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} + \frac{1 - y_i}{1 + e^{-F(x_i)}}
\]

\[
= \frac{-y_i e^{-F(x_i)} + 1 - y_i}{1 + e^{-F(x_i)}}
\]

\[
= \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

\[
= \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

最终得到的梯度为:

\[
\frac{\partial \text{loss}}{\partial F(x_i)} = \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

简化

\[
\frac{\partial \text{loss}}{\partial F(x_i)} = \frac{1}{1 + e^{-F(x_i)}} - y_i
\]

### 总结

通过上述推导,我们可以看到逻辑回归的损失函数如何被应用于 GBDT 中。在每一步迭代中,GBDT 会根据当前模型的预测和实际标签之间的差异来更新新的弱学习器(通常是决策树),从而逐步减少损失函数的值。

这个过程确保了模型能够逐步逼近最优解,同时通过负梯度方向进行参数更新,有效地减少了损失函数的值。

http://www.lryc.cn/news/524723.html

相关文章:

  • 【MySQL】表的基本操作
  • 项目中使用的是 FastJSON(com.alibaba:fastjson)JSON库
  • Flutter中PlatformView在鸿蒙中的使用
  • 音频入门(一):音频基础知识与分类的基本流程
  • 规避路由冲突
  • SQLmap 自动注入 -02
  • 4.JoranConfigurator解析logbak.xml
  • React 19 新特性总结
  • kafka学习笔记6 ACL权限 —— 筑梦之路
  • 【Java】Java抛异常到用户界面公共封装
  • 基于Redis实现短信验证码登录
  • 步入响应式编程篇(二)之Reactor API
  • Oracle SQL: TRANSLATE 和 REGEXP_LIKE 的知识点详细分析
  • RabbitMQ 在实际应用时要注意的问题
  • 算法日记8:StarryCoding60(单调栈)
  • 大象机器人发布首款穿戴式数据采集器myController S570,助力具身智能数据收集!
  • 【银河麒麟高级服务器操作系统】业务访问慢网卡丢包现象分析及处理过程
  • C语言之饭店外卖信息管理系统
  • 记一次 .NET某数字化协同管理系统 内存暴涨分析
  • 部门管理查询部门,nginx反向代理,前端如何访问到后端Tomcat 注解@RequestParam
  • JS通过ASCII码值实现随机字符串的生成(可指定长度以及解决首位不出现数值)
  • 速通Docker === 快速部署Redis主从集群
  • 论文笔记(六十三)Understanding Diffusion Models: A Unified Perspective(一)
  • stm32使用MDK5.35时遇到*** TOOLS.INI: TOOLCHAIN NOT INSTALLED
  • 在Ubuntu上安装RabbitMQ教程
  • 【算法】集合List和队列
  • uniapps使用HTML5的io模块拷贝文件目录
  • css‘s hover VS mobile
  • 工业制造离不开的BOM
  • HTML中的`<!DOCTYPE html>`是什么意思?