当前位置: 首页 > news >正文

PyTorch使用教程(8)-一文了解torchvision

一、什么是torchvision

torchvision提供了丰富的功能,主要包括数据集、模型、转换工具和实用方法四大模块。数据集模块内置了多种广泛使用的图像和视频数据集,如ImageNet、CIFAR-10、MNIST等,方便开发者进行训练和评估。模型模块封装了大量经典的预训练模型结构,如AlexNet、VGG、ResNet等,支持迁移学习和模型扩展。转换工具模块提供了丰富的数据增强和预处理操作,如裁剪、旋转、翻转、归一化等,有助于提升模型的泛化能力。实用方法模块则包含了一系列辅助工具,如图像保存、创建图像网格等,便于实验结果的可视化。
在这里插入图片描述

torchvision与PyTorch深度集成,支持CPU和GPU加速,能够在不同平台上高效运行。它简化了从数据准备到模型训练再到结果可视化的整个流程,为计算机视觉研究和开发提供了极大的便利。无论是初学者还是经验丰富的开发者,都可以通过torchvision快速构建和训练自己的视觉模型,加速AI应用的开发进程。

二、核心功能介绍

torchvision的核心功能主要包括数据集加载、图像转换、预训练模型加载、数据加载器以及实用工具等,以下是对这些功能的详细介绍及相关示例代码:

2.1 数据集加载

torchvision.datasets提供了多种流行的计算机视觉数据集,如CIFAR-10、MNIST、ImageNet等,支持一键下载和加载。

from torchvision import datasets# 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=None)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=None)

2.2 图像转换

torchvision.transforms模块提供了丰富的图像转换操作,如缩放、裁剪、翻转、归一化等,这些操作可以单独使用,也可以组合使用,以形成数据增强流水线。
在这里插入图片描述

from torchvision import transforms
# 定义转换操作
transform = transforms.Compose([transforms.Resize((256, 256)),#缩放transforms.RandomCrop(224),#随机裁剪transforms.RandomHorizontalFlip(),#随机翻转transforms.ToTensor(), #张量转化transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 应用转换操作
image = Image.open('path_to_image.jpg')
processed_image = transform(image)

2.3 预训练模型加载

torchvision.models模块提供了多种经典的预训练模型,如ResNet、VGG、AlexNet等,可以直接加载这些模型进行迁移学习或作为基准模型。
在这里插入图片描述

from torchvision import models
# 加载预训练的ResNet-50模型
model = models.resnet50(pretrained=True)

2.4 数据加载器

torch.utils.data.DataLoader是一个实用的数据加载器,可以与torchvision提供的数据集一起使用,方便地进行批量加载和数据迭代。

from torch.utils.data import DataLoader# 使用DataLoader加载数据
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

2.5 实用工具

torchvision还提供了一些实用工具,如torchvision.utils.make_grid,可以将多个图像拼接成一个网格图像,便于可视化。

from torchvision import utils
import matplotlib.pyplot as plt# 获取一批图像
images, _ = next(iter(train_loader))# 将图像拼接成网格
grid = utils.make_grid(images)# 显示图像
plt.imshow(grid.permute(1, 2, 0))
plt.show()

3. 小结

‌TorchVision是PyTorch生态系统中的关键库,专为计算机视觉设计,提供数据集、预训练模型、图像转换工具和实用功能‌。它简化了视觉项目的开发,支持数据加载、预处理、模型迁移学习等,是构建和训练计算机视觉模型的重要工具‌

http://www.lryc.cn/news/522916.html

相关文章:

  • 如何在不暴露MinIO地址的情况下,用Spring Boot与KKFileView实现文件预览
  • ICMP协议和ICMP重定向攻击
  • leetcode203-移除链表元素
  • Rust 中构建 RESTful API
  • Sqlmap入门
  • 迈向 “全能管家” 之路:机器人距离终极蜕变还需几步?
  • 移动端 REM 适配
  • 逐笔成交逐笔委托Level2高频数据下载和分析:20241230
  • C#实现字符串反转的4种方法
  • UDP 单播、多播、广播:原理、实践
  • 深入浅出:Go语言中的bytes包与字节串操作详解
  • 数据库存储上下标符号,sqlserver 2008r2,dm8
  • LabVIEW串口通信调试与数据接收问题
  • oneplus3t-lineage-14编译-android7
  • 存储过程(SQL)
  • 【I/O编程】UNIX文件基础
  • 完美解决phpstudy安装后mysql无法启动
  • 自己造轮子-基于Ceres的GNSS-INS松耦合组合导航算法
  • 「实战应用」如何为DHTMLX JavaScript 甘特图添加进度线
  • MySQL面试题2025 每日20道
  • HTML学习笔记(4)
  • 解决 MySQL 服务无法启动:failed to restart mysql.service unit not found
  • 在 Ubuntu 上安装 Nginx 的详细指南
  • 58,【8】BUUCTF [PwnThyBytes 2019]Baby_SQL1
  • 2.1 三个世界”与“图灵测试”:人工智能与人类智能的深度探索
  • 基于微信小程序的优购电商系统设计与实现(LW+源码+讲解)
  • JS宏进阶: 工厂函数与构造函数
  • 【Linux】线程全解:概念、操作、互斥与同步机制、线程池实现
  • 关于ubuntu命令行连接github失败解决办法
  • # [游戏开发] [Unity游戏开发]3D滚球游戏设计与实现教程