当前位置: 首页 > news >正文

opencv projectPoints函数 computeCorrespondEpilines函数 undistortPoints函数

opencv projectPoints函数

cv::projectPoints 是 OpenCV 中用于将三维点投影到二维图像平面的函数。它通常用于计算在相机坐标系下的三维点在图像坐标系中的位置,考虑了相机的内参和外参。

函数原型

void cv::projectPoints(InputArray objectPoints,InputArray rvec,InputArray tvec,InputArray cameraMatrix,InputArray distCoeffs,OutputArray imagePoints,OutputArray jacobian = noArray()
);

参数说明

  • objectPoints: 输入的三维点集合,通常是一个 nx3 的矩阵,表示 n 个三维点。
  • rvec: 旋转向量,描述相机的旋转。可以使用 Rodrigues 变换来从旋转矩阵转换为旋转向量。
  • tvec: 平移向量,描述相机的位置。
  • cameraMatrix: 相机内参矩阵,包含焦距和主点位置。
  • distCoeffs: 相机的畸变系数,通常是一个长度为 5 或 8 的向量。
  • imagePoints: 输出的二维点集合,函数将计算的图像坐标保存在这个参数中。
  • jacobian: 可选的输出参数,保存雅可比矩阵。

使用示例

以下是一个简单的示例,展示如何使用 cv::projectPoints 函数:

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 定义三维点std::vector<cv::Point3f> objectPoints = {{0.0f, 0.0f, 0.0f},{1.0f, 0.0f, 0.0f},{0.0f, 1.0f, 0.0f},{1.0f, 1.0f, 0.0f}};// 定义相机内参矩阵cv::Mat cameraMatrix = (cv::Mat_<double>(3, 3) << 800, 0, 320,0, 800, 240,0, 0, 1);// 定义相机畸变系数cv::Mat distCoeffs = (cv::Mat_<double>(5, 1) << 0, 0, 0, 0, 0);// 定义旋转向量和位移向量cv::Mat rvec = (cv::Mat_<double>(3, 1) << 0, 0, 0); // 无旋转cv::Mat tvec = (cv::Mat_<double>(3, 1) << 0, 0, 5); // 向前移动5个单位// 输出二维点std::vector<cv::Point2f> imagePoints;// 使用 projectPoints 函数cv::projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints);// 输出结果for (size_t i = 0; i < imagePoints.size(); ++i) {std::cout << "3D Point: " << objectPoints[i] << " -> 2D Point: " << imagePoints[i] << std::endl;}return 0;
}

代码说明

  1. 定义三维点:创建一个包含多个三维点的向量。
  2. 设置相机内参和畸变系数:定义一个相机内参矩阵和畸变系数。
  3. 定义旋转和位移向量:设置相机的旋转和位移。
  4. 调用 projectPoints:将三维点投影到图像平面,计算出对应的二维点。
  5. 输出结果:打印出每个三维点及其对应的二维投影。

总结

cv::projectPoints 是一个强大的工具,可以用于各种计算机视觉应用,如相机标定、三维重建等。通过正确设置相机参数和三维点,可以方便地将三维信息映射到二维图像中。

computeCorrespondEpilines函数

cv::computeCorrespondEpilines 函数在 OpenCV 中用于计算对应点的极线。这在立体视觉中非常重要,因为它可以帮助我们确定一对立体图像中对应点的匹配关系。

函数原型

void cv::computeCorrespondEpilines(InputArray points,int mode,InputArray F,OutputArray lines
);

参数说明

  • points: 输入的点集,可以是 2D 点的集合。对于单个图像中的点,格式应为 (N \times 1 \times 2) 或 (N \times 2)。
  • mode: 模式参数,指定输入点的来源。可以是以下值:
    • 1: 表示输入点来自第一幅图像。
    • 2: 表示输入点来自第二幅图像。
  • F: 基本矩阵(Fundamental Matrix),用于描述两个相机视图之间的几何关系。
  • lines: 输出的极线,每个点对应一条极线。格式是 (N \times 1 \times 3) 或 (N \times 3)。

示例代码

以下是一个使用 computeCorrespondEpilines 的示例:

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 定义一组点,假设这些点来自第一幅图像std::vector<cv::Point2f> points1 = { {100, 150}, {200, 250}, {300, 350} };// 基本矩阵 F,假设已知cv::Mat F = (cv::Mat_<double>(3, 3) << 0, 0, -0.1, 0, 0, -0.2, 0.1, 0.2, 1);// 计算对应的极线cv::Mat lines1;cv::computeCorrespondEpilines(points1, 1, F, lines1);// 打印极线for (int i = 0; i < lines1.rows; ++i) {double a = lines1.at<double>(i, 0);double b = lines1.at<double>(i, 1);double c = lines1.at<double>(i, 2);std::cout << "Line " << i + 1 << ": " << a << "x + " << b << "y + " << c << " = 0" << std::endl;}return 0;
}

代码解析

  1. 输入点: 定义一组点,这些点通常是从第一幅图像中提取的。
  2. 基本矩阵: 定义已知的基本矩阵 (F)。
  3. 计算极线: 使用 computeCorrespondEpilines 函数计算极线,将结果存储在 lines1 中。
  4. 输出极线: 打印计算出的极线方程。

注意事项

  • 基本矩阵: 基本矩阵 (F) 可以通过立体标定过程获得,通常需要在相机标定和特征匹配之后计算。
  • 点的格式: 确保输入点的格式正确,符合函数要求。
  • 模式参数: 根据输入点的来源设置适当的模式参数(1 或 2)。

总结

computeCorrespondEpilines 是一个非常有用的函数,它可以帮助在立体视觉中确定点对应的极线,从而在后续的匹配和重建过程中发挥重要作用。通过正确使用基本矩阵和输入点,可以有效地计算出所需的极线。

极线

在立体视觉和计算机视觉中,极线(epipolar lines)是一个重要的概念,主要用于描述两个相机视图之间的几何关系。以下是极线的含义和作用:

极线的定义

  1. 极点和极线:

    • 在立体视觉中,两个相机的视点分别称为左视点右视点。如果你在左视图中选择一个点,则在右视图中,该点的对应点必定位于一条特定的直线上,这条直线称为极线
    • 对于左视图中的每个点,都有一条与之对应的极线在右视图中;反之亦然。
  2. 极线的几何意义:

    • 极线是由相机的视点(即相机的光心)和对应点在另一幅图像中的位置共同决定的。极线的方程可以用基本矩阵(Fundamental Matrix)来表示。

极线的作用

  1. 简化匹配:

    • 由于对应点必须位于极线上的特性,极线大大简化了点匹配的过程。在进行立体匹配时,只需在极线上查找可能的对应点,而不需要在整幅图像中搜索,从而提高计算效率。
  2. 约束条件:

    • 极线提供了几何约束,允许我们在立体图像中进行更精确的点匹配。这种约束有助于减少误匹配的可能性,提高深度估计的准确性。
  3. 三维重建:

    • 通过找到图像中的对应点并计算其极线,可以实现三维重建。通过三角测量,利用两个相机的视点和对应点的位置,可以计算出物体在三维空间中的位置。

总结

在立体视觉中,极线是相机视图之间的几何关系的关键,它简化了对应点的匹配问题,提供了约束条件,并在三维重建中发挥重要作用。理解极线的概念是进行立体视觉分析和应用的基础。

opencv undistortPoints函数

在 OpenCV 中,undistortPoints 函数用于将畸变的图像点转换为未畸变的点。这个函数特别有用在相机标定后,校正图像中的点以消除镜头畸变。

函数原型

void cv::undistortPoints(InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs, InputArray R = noArray(), InputArray P = noArray()
);

参数说明

  • src: 输入的畸变点,通常是一个 (N \times 1 \times 2) 或 (N \times 2) 的矩阵,表示图像中的点。
  • dst: 输出的未畸变点,格式与 src 相同。
  • cameraMatrix: 相机内参矩阵,包含焦距和主点坐标。
  • distCoeffs: 畸变系数,包括径向和切向畸变系数。
  • R: 可选参数,表示旋转矩阵。如果没有提供,默认为单位矩阵。
  • P: 可选参数,表示新的相机内参矩阵。如果没有提供,默认为与 cameraMatrix 相同的矩阵。

示例代码

以下是一个使用 undistortPoints 的示例:

#include <opencv2/opencv.hpp>
#include <vector>int main() {// 相机内参矩阵cv::Mat cameraMatrix = (cv::Mat_<double>(3, 3) << 1000, 0, 320,0, 1000, 240,0, 0, 1);// 畸变系数cv::Mat distCoeffs = (cv::Mat_<double>(5, 1) << 0.1, -0.05, 0, 0, 0);// 输入的畸变点std::vector<cv::Point2f> distortedPoints = { {100, 100}, {150, 150}, {200, 200} };// 输出的未畸变点std::vector<cv::Point2f> undistortedPoints;// 使用 undistortPoints 函数cv::undistortPoints(distortedPoints, undistortedPoints, cameraMatrix, distCoeffs);// 打印未畸变的点for (const auto& point : undistortedPoints) {std::cout << "Undistorted Point: (" << point.x << ", " << point.y << ")\n";}return 0;
}

代码解析

  1. 相机内参和畸变系数: 定义相机的内参矩阵和畸变系数。
  2. 输入和输出点: 创建一个包含畸变点的向量,并定义一个空的向量来存储未畸变的结果。
  3. 调用 undistortPoints: 使用该函数将畸变点转换为未畸变点。
  4. 输出结果: 打印未畸变后的点。

注意事项

  • undistortPoints 函数假设输入点是以归一化坐标表示的(即相对于相机主点的坐标),如果你提供的是图像像素坐标,你可能需要先将其转换为归一化坐标。
  • 如果你想生成新的图像,可以使用 cv::undistort 函数,它将整个图像进行畸变校正。

总结

undistortPoints 是一个强大的工具,用于消除图像点的畸变,常用于相机标定和图像处理任务中。通过正确使用内参和畸变系数,可以有效地校正图像数据。

http://www.lryc.cn/news/522412.html

相关文章:

  • springboot集成websocket实现实时大量数据,效率性能高
  • 游戏引擎学习第80天
  • Windows 上的 MySQL 8.4.3 和 WSL(Ubuntu)的 MySQL 8.0.40 之间配置 主从同步
  • 【狂热算法篇】探秘图论之 Floyd 算法:解锁最短路径的神秘密码(通俗易懂版)
  • Sentinel配置流控规则详解
  • 解锁动态规划的奥秘:从零到精通的创新思维解析(6)
  • Qwen2.5 3B、7B、14B在文本按照规范进行标准化改写任务上的表现
  • Oracle报错ORA-01078、LRM-00109
  • 免费为企业IT规划WSUS:Windows Server 更新服务 (WSUS) 之快速入门教程(一)
  • Titans 架构中的记忆整合:Memory as a Context;Gated Memory;Memory as a Layer
  • 无缝过渡:将 Ansys 子结构模型转换为 Nastran
  • 小哆啦的跳跃挑战:能否突破迷宫的极限?
  • KubeSphere部署安装,接入KubeKey安装的k8s集群
  • Object常用的方法及开发中的使用场景
  • SQL2000在win10上安装的方法
  • Windows图形界面(GUI)-QT-C/C++ - QT 对话窗口
  • Java语言的数据结构
  • 【12】Word:张老师学术论文❗
  • 大疆最新款无人机发布,可照亮百米之外目标
  • 《小迪安全》学习笔记05
  • 56_多级缓存实现
  • 每日进步一点点(网安)
  • 宝塔php7.4安装报错,无法安装,php8以上可以安装,以下的不行,gd库什么的都正常
  • SDL2:PC端编译使用
  • Windows 蓝牙驱动开发-蓝牙设备栈
  • docker一张图理解
  • RocketMQ、Kafka、RabbitMQ,如何选型?
  • RabbitMQ故障全解析:消费、消息及日常报错处理与集群修复
  • 无公网IP 实现外网访问本地 Docker 部署 Navidrome
  • pnpm add 和 pnpm install 的区别?