当前位置: 首页 > news >正文

Flink(八):DataStream API (五) Join

1. Window Join

Window join 作用在两个流中有相同 key 且处于相同窗口的元素上。这些窗口可以通过 window assigner 定义,并且两个流中的元素都会被用于计算窗口的结果。两个流中的元素在组合之后,会被传递给用户定义的 JoinFunction 或 FlatJoinFunction,用户可以用它们输出符合 join 要求的结果。常见的用例可以总结为以下代码

stream.join(otherStream).where(<KeySelector>).equalTo(<KeySelector>).window(<WindowAssigner>).apply(<JoinFunction>);

语义上有一些值得注意的地方:

  • 从两个流中创建成对的元素与 inner-join 类似,即一个流中的元素在与另一个流中对应的元素完成 join 之前不会被输出。
  • 完成 join 的元素会将他们的 timestamp 设为对应窗口中允许的最大 timestamp。比如一个边界为 [5, 10) 窗口中的元素在 join 之后的 timestamp 为 9。

1.1 滚动 Window Join

使用滚动 window join 时,所有 key 相同且共享一个滚动窗口的元素会被组合成对,并传递给 JoinFunction 或 FlatJoinFunction。因为这个行为与 inner join 类似,所以一个流中的元素如果没有与另一个流中的元素组合起来,它就不会被输出!

如图所示,定义了一个大小为 2 毫秒的滚动窗口,即形成了边界为 [0,1], [2,3], ... 的窗口。图中展示了如何将每个窗口中的元素组合成对,组合的结果将被传递给 JoinFunction。注意,滚动窗口 [6,7] 将不会输出任何数据,因为绿色流当中没有数据可以与橙色流的 ⑥ 和 ⑦ 配对。

import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;...DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;orangeStream.join(greenStream).where(<KeySelector>).equalTo(<KeySelector>).window(TumblingEventTimeWindows.of(Time.milliseconds(2))).apply (new JoinFunction<Integer, Integer, String> (){@Overridepublic String join(Integer first, Integer second) {return first + "," + second;}});

1.2 滑动 Window Join

当使用滑动 window join 时,所有 key 相同且处于同一个滑动窗口的元素将被组合成对,并传递给 JoinFunction 或 FlatJoinFunction。当前滑动窗口内,如果一个流中的元素没有与另一个流中的元素组合起来,它就不会被输出!注意,在某个滑动窗口中被 join 的元素不一定会在其他滑动窗口中被 join。

本例中定义了长度为两毫秒,滑动距离为一毫秒的滑动窗口,生成的窗口实例区间为 [-1, 0],[0,1],[1,2],[2,3], …。 X 轴下方是每个滑动窗口中被 join 后传递给 JoinFunction 的元素。图中可以看到橙色 ② 与绿色 ③ 在窗口 [2,3] 中 join,但没有与窗口 [1,2] 中任何元素 join。

import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;...DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;orangeStream.join(greenStream).where(<KeySelector>).equalTo(<KeySelector>).window(SlidingEventTimeWindows.of(Time.milliseconds(2) /* size */, Time.milliseconds(1) /* slide */)).apply (new JoinFunction<Integer, Integer, String> (){@Overridepublic String join(Integer first, Integer second) {return first + "," + second;}});

1.3 会话 Window Join

使用会话 window join 时,所有 key 相同且组合后符合会话要求的元素将被组合成对,并传递给 JoinFunction 或 FlatJoinFunction。这个操作同样是 inner join,所以如果一个会话窗口中只含有某一个流的元素,这个窗口将不会产生输出!

这里我们定义了一个间隔为至少一毫秒的会话窗口。图中总共有三个会话,前两者中两个流都有元素,它们被 join 并传递给 JoinFunction。而第三个会话中,绿流没有任何元素,所以 ⑧ 和 ⑨ 没有被 join!

import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.EventTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;...DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;orangeStream.join(greenStream).where(<KeySelector>).equalTo(<KeySelector>).window(EventTimeSessionWindows.withGap(Time.milliseconds(1))).apply (new JoinFunction<Integer, Integer, String> (){@Overridepublic String join(Integer first, Integer second) {return first + "," + second;}});

2. Interval Join

Interval join 组合元素的条件为:两个流(我们暂时称为 A 和 B)中 key 相同且 B 中元素的 timestamp 处于 A 中元素 timestamp 的一定范围内。这个条件可以更加正式地表示为 b.timestamp ∈ [a.timestamp + lowerBound; a.timestamp + upperBound] 或 a.timestamp + lowerBound <= b.timestamp <= a.timestamp + upperBound

这里的 a 和 b 为 A 和 B 中共享相同 key 的元素。上界和下界可正可负,只要下界永远小于等于上界即可。 Interval join 目前仅执行 inner join。当一对元素被传递给 ProcessJoinFunction,他们的 timestamp 会从两个元素的 timestamp 中取最大值 (timestamp 可以通过 ProcessJoinFunction.Context 访问)。Interval join 目前仅支持 event time。

上例中,我们 join 了橙色和绿色两个流,join 的条件是:以 -2 毫秒为下界、+1 毫秒为上界。 默认情况下,上下界也被包括在区间内,但 .lowerBoundExclusive() 和 .upperBoundExclusive() 可以将它们排除在外。

图中三角形所表示的条件也可以写成更加正式的表达式:orangeElem.ts + lowerBound <= greenElem.ts <= orangeElem.ts + upperBound

import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;...DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;orangeStream.keyBy(<KeySelector>).intervalJoin(greenStream.keyBy(<KeySelector>)).between(Time.milliseconds(-2), Time.milliseconds(1)).process (new ProcessJoinFunction<Integer, Integer, String>(){@Overridepublic void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {out.collect(left + "," + right);}});

http://www.lryc.cn/news/522134.html

相关文章:

  • HarmonyOS NEXT边学边玩:从零实现一个影视App(六、视频播放页的实现)
  • salesforce实现一个字段的默认初始值根据另一个字段的值来自动确定
  • Linux 文件权限详解
  • 【混合开发】CefSharp+Vue桌面应用程序开发
  • springBoot项目使用Elasticsearch教程
  • 模型 多元化思维(系统科学)
  • Google地图瓦片爬虫
  • 【C++】size_t全面解析与深入拓展
  • Web端实时播放RTSP视频流(监控)
  • 学习 Git 的工作原理,而不仅仅是命令
  • C语言变长嵌套数组常量初始化定义技巧
  • 如何查看特定版本的Spring源码
  • 【深度学习】关键技术-激活函数(Activation Functions)
  • 网关相关知识
  • SpringBoot整合SpringSecurity详解
  • 【C++基础】enum,union,uint8_t,static
  • 单片机的原理及其应用:从入门到进阶的全方位指南
  • 如何使用 Go语言操作亚马逊 S3 对象云存储
  • 2025年应用与API安全展望:挑战与机遇并存
  • Linux安装docker,安装配置xrdp远程桌面
  • VD:生成a2l文件
  • 【SpringBoot应用篇】SpringBoot+MDC+自定义Filter操作traceId实现日志链路追踪
  • unity2022以上导出到AndroidStudio后更新步骤
  • 【ArcGIS初学】产生随机点计算混淆矩阵
  • Harmony面试模版
  • PCM5142集成32位384kHz PCM音频立体声114dB差分输出DAC编解码芯片
  • 浪潮云财务系统xtdysrv.asmx存在命令执行漏洞
  • 【网络编程】基础知识
  • ResNet (Residual Network) - 残差网络:深度卷积神经网络的突破
  • MOSFET体二极管的反向恢复分析