当前位置: 首页 > news >正文

完整地实现了推荐系统的构建、实验和评估过程,为不同推荐算法在同一数据集上的性能比较提供了可重复实验的框架

{"cells": [{"cell_type": "markdown","metadata": {},"source": ["# 基于用户的协同过滤算法"]},{"cell_type": "code","execution_count": 1,"metadata": {},"outputs": [],"source": ["# 导入包\n","import random\n","import math\n","import time\n","from tqdm import tqdm"]},{"cell_type": "markdown","metadata": {},"source": ["## 一. 通用函数定义"]},{"cell_type": "code","execution_count": 2,"metadata": {},"outputs": [],"source": ["# 定义装饰器,监控运行时间\n","def timmer(func):\n","    def wrapper(*args, **kwargs):\n","        start_time = time.time()\n","        res = func(*args, **kwargs)\n","        stop_time = time.time()\n","        print('Func %s, run time: %s' % (func.__name__, stop_time - start_time))\n","        return res\n","    return wrapper"]},{"cell_type": "markdown","metadata": {},"source": ["### 1. 数据处理相关\n","1. load data\n","2. split data"]},{"cell_type": "code","execution_count": 3,"metadata": {},"outputs": [],"source": ["class Dataset():\n","    \n","    def __init__(self, fp):\n","        # fp: data file path\n","        self.data = self.loadData(fp)\n","    \n","    @timmer\n","    def loadData(self, fp):\n","        data = []\n","        for l in open(fp):\n","            data.append(tuple(map(int, l.strip().split('::')[:2])))\n","        return data\n","    \n","    @timmer\n","    def splitData(self, M, k, seed=1):\n","        '''\n","        :params: data, 加载的所有(user, item)数据条目\n","        :params: M, 划分的数目,最后需要取M折的平均\n","        :params: k, 本次是第几次划分,k~[0, M)\n","        :params: seed, random的种子数,对于不同的k应设置成一样的\n","        :return: train, test\n","        '''\n","        train, test = [], []\n","        random.seed(seed)\n","        for user, item in self.data:\n","            # 这里与书中的不一致,本人认为取M-1较为合理,因randint是左右都覆盖的\n","            if random.randint(0, M-1) == k:  \n","                test.append((user, item))\n","            else:\n","                train.append((user, item))\n","\n","        # 处理成字典的形式,user->set(items)\n","        def convert_dict(data):\n","            data_dict = {}\n","            for user, item in data:\n","                if user not in data_dict:\n","                    data_dict[user] = set()\n","                data_dict[user].add(item)\n","            data_dict = {k: list(data_dict[k]) for k in data_dict}\n","            return data_dict\n","\n","        return convert_dict(train), convert_dict(test)"]},{"cell_type": "markdown","metadata": {},"source": ["### 2. 评价指标\n","1. Precision\n","2. Recall\n","3. Coverage\n","4. Popularity(Novelty)"]},{"cell_type": "code","execution_count": 4,"metadata": {},"outputs": [],"source": ["class Metric():\n","    \n","    def __init__(self, train, test, GetRecommendation):\n","        '''\n","        :params: train, 训练数据\n","        :params: test, 测试数据\n","        :params: GetRecommendation, 为某个用户获取推荐物品的接口函数\n","        '''\n","        self.train = train\n","        self.test = test\n","        self.GetRecommendation = GetRecommendation\n","        self.recs = self.getRec()\n","        \n","    # 为test中的每个用户进行推荐\n","    def getRec(self):\n","        recs = {}\n","        for user in self.test:\n","            rank = self.GetRecommendation(user)\n","            recs[user] = rank\n","        return recs\n","        \n","    # 定义精确率指标计算方式\n","    def precision(self):\n","        all, hit = 0, 0\n","        for user in self.test:\n","            test_items = set(self.test[user])\n","            rank = self.recs[user]\n","            for item, score in rank:\n","                if item in test_items:\n","                    hit += 1\n","            all += len(rank)\n","        return round(hit / all * 100, 2)\n","    \n","    # 定义召回率指标计算方式\n","    def recall(self):\n","        all, hit = 0, 0\n","        for user in self.test:\n","            test_items = set(self.test[user])\n","            rank = self.recs[user]\n","            for item, score in rank:\n","                if item in test_items:\n","                    hit += 1\n","            all += len(test_items)\n","        return round(hit / all * 100, 2)\n","    \n","    # 定义覆盖率指标计算方式\n","    def coverage(self):\n","        all_item, recom_item = set(), set()\n","        for user in self.test:\n","            for item in self.train[user]:\n","                all_item.add(item)\n","            rank = self.recs[user]\n","            for item, score in rank:\n","                recom_item.add(item)\n","        return round(len(recom_item) / len(all_item) * 100, 2)\n","    \n","    # 定义新颖度指标计算方式\n","    def popularity(self):\n","        # 计算物品的流行度\n","        item_pop = {}\n","        for user in self.train:\n","            for item in self.train[user]:\n","                if item not in item_pop:\n","                    item_pop[item] = 0\n","                item_pop[item] += 1\n","\n","        num, pop = 0, 0\n","        for user in self.test:\n","            rank = self.recs[user]\n","            for item, score in rank:\n","                # 取对数,防止因长尾问题带来的被流行物品所主导\n","                pop += math.log(1 + item_pop[item])\n","                num += 1\n","        return round(pop / num, 6)\n","    \n","    def eval(self):\n","        metric = {'Precision': self.precision(),\n","                  'Recall': self.recall(),\n","                  'Coverage': self.coverage(),\n","                  'Popularity': self.popularity()}\n","        print('Metric:', metric)\n","        return metric"]},{"cell_type": "markdown","metadata": {},"source": ["## 二. 算法实现\n","1. Random\n","2. MostPopular\n","3. UserCF\n","4. UserIIF"]},{"cell_type": "code","execution_count": 5,"metadata": {},"outputs": [],"source": ["# 1. 随机推荐\n","def Random(train, K, N):\n","    '''\n","    :params: train, 训练数据集\n","    :params: K, 可忽略\n","    :params: N, 超参数,设置取TopN推荐物品数目\n","    :return: GetRecommendation,推荐接口函数\n","    '''\n","    items = {}\n","    for user in train:\n","        for item in train[user]:\n","            items[item] = 1\n","    \n","    def GetRecommendation(user):\n","        # 随机推荐N个未见过的\n","        user_items = set(train[user])\n","        rec_items = {k: items[k] for k in items if k not in user_items}\n","        rec_items = list(rec_items.items())\n","        random.shuffle(rec_items)\n","        return rec_items[:N]\n","    \n","    return GetRecommendation"]},{"cell_type": "code","execution_count": 6,"metadata": {},"outputs": [],"source": ["# 2. 热门推荐\n","def MostPopular(train, K, N):\n","    '''\n","    :params: train, 训练数据集\n","    :params: K, 可忽略\n","    :params: N, 超参数,设置取TopN推荐物品数目\n","    :return: GetRecommendation, 推荐接口函数\n","    '''\n","    items = {}\n","    for user in train:\n","        for item in train[user]:\n","            if item not in items:\n","                items[item] = 0\n","            items[item] += 1\n","        \n","    def GetRecommendation(user):\n","        # 随机推荐N个没见过的最热门的\n","        user_items = set(train[user])\n","        rec_items = {k: items[k] for k in items if k not in user_items}\n","        rec_items = list(sorted(rec_items.items(), key=lambda x: x[1], reverse=True))\n","        return rec_items[:N]\n","    \n","    return GetRecommendation"]},{"cell_type": "code","execution_count": 7,"metadata": {},"outputs": [],"source": ["# 3. 基于用户余弦相似度的推荐\n","def UserCF(train, K, N):\n","    '''\n","    :params: train, 训练数据集\n","    :params: K, 超参数,设置取TopK相似用户数目\n","    :params: N, 超参数,设置取TopN推荐物品数目\n","    :return: GetRecommendation, 推荐接口函数\n","    '''\n","    # 计算item->user的倒排索引\n","    item_users = {}\n","    for user in train:\n","        for item in train[user]:\n","            if item not in item_users:\n","                item_users[item] = []\n","            item_users[item].append(user)\n","    \n","    # 计算用户相似度矩阵\n","    sim = {}\n","    num = {}\n","    for item in item_users:\n","        users = item_users[item]\n","        for i in range(len(users)):\n","            u = users[i]\n","            if u not in num:\n","                num[u] = 0\n","            num[u] += 1\n","            if u not in sim:\n","                sim[u] = {}\n","            for j in range(len(users)):\n","                if j == i: continue\n","                v = users[j]\n","                if v not in sim[u]:\n","                    sim[u][v] = 0\n","                sim[u][v] += 1\n","    for u in sim:\n","        for v in sim[u]:\n","            sim[u][v] /= math.sqrt(num[u] * num[v])\n","    \n","    # 按照相似度排序\n","    sorted_user_sim = {k: list(sorted(v.items(), \\\n","                               key=lambda x: x[1], reverse=True)) \\\n","                       for k, v in sim.items()}\n","    \n","    # 获取接口函数\n","    def GetRecommendation(user):\n","        items = {}\n","        seen_items = set(train[user])\n","        for u, _ in sorted_user_sim[user][:K]:\n","            for item in train[u]:\n","                # 要去掉用户见过的\n","                if item not in seen_items:\n","                    if item not in items:\n","                        items[item] = 0\n","                    items[item] += sim[user][u]\n","        recs = list(sorted(items.items(), key=lambda x: x[1], reverse=True))[:N]\n","        return recs\n","    \n","    return GetRecommendation"]},{"cell_type": "code","execution_count": 8,"metadata": {},"outputs": [],"source": ["# 4. 基于改进的用户余弦相似度的推荐\n","def UserIIF(train, K, N):\n","    '''\n","    :params: train, 训练数据集\n","    :params: K, 超参数,设置取TopK相似用户数目\n","    :params: N, 超参数,设置取TopN推荐物品数目\n","    :return: GetRecommendation, 推荐接口函数\n","    '''\n","    # 计算item->user的倒排索引\n","    item_users = {}\n","    for user in train:\n","        for item in train[user]:\n","            if item not in item_users:\n","                item_users[item] = []\n","            item_users[item].append(user)\n","    \n","    # 计算用户相似度矩阵\n","    sim = {}\n","    num = {}\n","    for item in item_users:\n","        users = item_users[item]\n","        for i in range(len(users)):\n","            u = users[i]\n","            if u not in num:\n","                num[u] = 0\n","            num[u] += 1\n","            if u not in sim:\n","                sim[u] = {}\n","            for j in range(len(users)):\n","                if j == i: continue\n","                v = users[j]\n","                if v not in sim[u]:\n","                    sim[u][v] = 0\n","                # 相比UserCF,主要是改进了这里\n","                sim[u][v] += 1 / math.log(1 + len(users))\n","    for u in sim:\n","        for v in sim[u]:\n","            sim[u][v] /&#
http://www.lryc.cn/news/521638.html

相关文章:

  • DRV8311三相PWM无刷直流电机驱动器
  • Mysql--运维篇--备份和恢复(逻辑备份,mysqldump,物理备份,热备份,温备份,冷备份,二进制文件备份和恢复等)
  • 机器学习-归一化
  • Linux 串口检查状态的实用方法
  • Qt的核心机制概述
  • 微调神经机器翻译模型全流程
  • Cesium加载地形
  • gitlab runner正常连接 提示 作业挂起中,等待进入队列 解决办法
  • C#对动态加载的DLL进行依赖注入,并对DLL注入服务
  • HDMI接口
  • A/B 测试:玩转假设检验、t 检验与卡方检验
  • 第143场双周赛:最小可整除数位乘积 Ⅰ、执行操作后元素的最高频率 Ⅰ、执行操作后元素的最高频率 Ⅱ、最小可整除数位乘积 Ⅱ
  • 【STM32】LED状态翻转函数
  • uniapp 小程序 textarea 层级穿透,聚焦光标位置错误怎么办?
  • 汽车 SOA 架构下的信息安全新问题及对策漫谈
  • Unity-Mirror网络框架-从入门到精通之RigidbodyPhysics示例
  • 小程序如何引入腾讯位置服务
  • H3CNE-12-静态路由(一)
  • 多线程锁
  • ZooKeeper 核心知识全解析:架构、角色、节点与应用
  • 笔记本电脑 选购 回收 特权模式使用 指南
  • 2023-2024 学年 广东省职业院校技能大赛(高职组)“信息安全管理与评估”赛题一
  • C#补充----反射,特性,迭代器,特殊语法,值类型运用类型。
  • 深度学习核函数
  • Spring MVC流程一张图理解
  • 计算机网络速成
  • spring.profiles.active不同优先级
  • 我这不需要保留本地修改, 只需要拉取远程更改
  • 源码编译安装httpd 2.4,提供系统服务管理脚本并测试(两种方法实现)
  • 深度学习在自动化测试中的创新应用:提升运维效率与质量