当前位置: 首页 > news >正文

【python】OpenCV—Extract Horizontal and Vertical Lines—Morphology

在这里插入图片描述

文章目录

  • 1、功能描述
  • 2、代码实现
  • 3、效果展示
  • 4、完整代码
  • 5、参考


更多有趣的代码示例,可参考【Programming】


1、功能描述

基于 opencv-python 库,利用形态学的腐蚀和膨胀,提取图片中的水平或者竖直线条

2、代码实现

导入基本的库函数

import numpy as np
import cv2 as cv

读入图片(https://raw.githubusercontent.com/opencv/opencv/5.x/doc/tutorials/imgproc/morph_lines_detection/images/src.png),增加读错图片的判断机制

1.jpg

在这里插入图片描述

def main(save=False):# Load the imagesrc = cv.imread("./1.jpg", cv.IMREAD_COLOR)# Check if image is loaded fineif src is None:print('Error opening image')return -1

可视化图片,并将其转化为灰度图

    # Show source imagecv.imshow("src", src)# [load_image]# [gray]# Transform source image to gray if it is not alreadyif len(src.shape) != 2:gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)else:gray = srcif save:cv.imwrite("gray.jpg", gray)# Show gray imageshow_wait_destroy("gray", gray)# [gray]

gray.jpg
在这里插入图片描述

show_wait_destroy 实现如下 ,关闭图片后才运行后续代码

def show_wait_destroy(winname, img):cv.imshow(winname, img)cv.moveWindow(winname, 500, 0)cv.waitKey(0)cv.destroyWindow(winname)

二进制求反灰度图, 并自适应阈值二值化

    # [bin]# Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbolgray = cv.bitwise_not(gray)if save:cv.imwrite("bitwise_not_gray.jpg", gray)bw = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, \cv.THRESH_BINARY, 15, -2)if save:cv.imwrite("adaptiveThreshold.jpg", bw)# Show binary imageshow_wait_destroy("binary", bw)# [bin]

bitwise_not_gray.jpg
在这里插入图片描述
adaptiveThreshold.jpg

在这里插入图片描述

复制图片 adaptiveThreshold.jpg ,准备提取水平线和竖直线

    # [init]# Create the images that will use to extract the horizontal and vertical lineshorizontal = np.copy(bw)vertical = np.copy(bw)# [init]

提取水平线

    # [horiz]# Specify size on horizontal axiscols = horizontal.shape[1]  # 1024 colshorizontal_size = cols // 30  # 34# Create structure element for extracting horizontal lines through morphology operationshorizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))# Apply morphology operationshorizontal = cv.erode(horizontal, horizontalStructure)if save:cv.imwrite("erode-horizontal.jpg", horizontal)horizontal = cv.dilate(horizontal, horizontalStructure)if save:cv.imwrite("dilate-horizontal.jpg", horizontal)# Show extracted horizontal linesshow_wait_destroy("horizontal", horizontal)# [horiz]

首先会构建结构元素 horizontalStructure(定义了形态学操作的邻域形状和大小)

图片列数 // 30 得到全为 1 的数组

array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=uint8)

接着腐蚀操作 erode-horizontal.jpg

在这里插入图片描述

最后膨胀操作 dilate-horizontal.jpg

在这里插入图片描述

至此我们就提取到了图片中的水平方向的线条

接下来我们提取竖直方向的线条

 	# [vert]# Specify size on vertical axisrows = vertical.shape[0]  # 134verticalsize = rows // 30  # 4# Create structure element for extracting vertical lines through morphology operationsverticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))# Apply morphology operationsvertical = cv.erode(vertical, verticalStructure)if save:cv.imwrite("erode-vertical.jpg", vertical)vertical = cv.dilate(vertical, verticalStructure)if save:cv.imwrite("dilate-vertical.jpg", vertical)# Show extracted vertical linesshow_wait_destroy("vertical", vertical)# [vert]

同理,也是先构建一个结构元素 verticalStructure

array([[1],[1],[1],[1]], dtype=uint8)

腐蚀 erode-vertical.jpg

在这里插入图片描述

膨胀 dilate-vertical.jpg

在这里插入图片描述
至此我们提取出了竖直方向的线条


可以拓展一下,

As you can see we are almost there. However, at that point you will notice that the edges of the notes are a bit rough. For that reason we need to refine the edges in order to obtain a smoother result

    '''Extract edges and smooth image according to the logic1. extract edges2. dilate(edges)3. src.copyTo(smooth)4. blur smooth img5. smooth.copyTo(src, edges)'''

dilate-vertical.jpg 二进制求反,

    # [smooth]# Inverse vertical imagevertical = cv.bitwise_not(vertical)if save:cv.imwrite("bitwise_not_vertical.jpg", vertical)show_wait_destroy("vertical_bit", vertical)

bitwise_not_vertical.jpg
在这里插入图片描述
cv2.adaptiveThreshold 适应性阈值二值化

    # Step 1edges = cv.adaptiveThreshold(vertical, 255, cv.ADAPTIVE_THRESH_MEAN_C, \cv.THRESH_BINARY, 3, -2)if save:cv.imwrite("step1_edges.jpg", edges)show_wait_destroy("edges", edges)

得到 step1_edges.jpg,实现了边缘检测

在这里插入图片描述

看看 cv2.adaptiveThreshold 的介绍仔细分析下实现过程

dst = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

在这里插入图片描述

形参 C 从邻域像素的平均值或加权平均值中减去的常数,配置的为负数,附近颜色相近的变黑(eg 纯白区域,像素 255,阈值 255-(-2)=257,都变黑,再 eg,纯黑区域,像素 0,阈值 0-(-2)=2,也是黑),附近颜色变动的变白(黑白交替,白色的部分保留,黑色的部分变黑),可以实现边缘提取,妙

膨胀强化边缘

    # Step 2kernel = np.ones((2, 2), np.uint8)edges = cv.dilate(edges, kernel)if save:cv.imwrite("step2_edges.jpg", edges)show_wait_destroy("dilate", edges)

kernel

array([[1, 1],[1, 1]], dtype=uint8)

step2_edges.jpg

在这里插入图片描述

复制 bitwise_not_vertical.jpg

    # Step 3smooth = np.copy(vertical)

模糊处理 step4_smooth.jpg

    # Step 4smooth = cv.blur(smooth, (2, 2))if save:cv.imwrite("step4_smooth.jpg", smooth)

在这里插入图片描述

记录下 step2_edges.jpg 中像素不为零的部分的坐标,也即边缘部分坐标

边缘部分用平滑后的像素替换原来的像素

    # Step 5(rows, cols) = np.where(edges != 0)vertical[rows, cols] = smooth[rows, cols]# Show final resultshow_wait_destroy("smooth - final", vertical)if save:cv.imwrite("smooth_final.jpg", vertical)# [smooth]

在这里插入图片描述

3、效果展示

输入
在这里插入图片描述

水平线条

在这里插入图片描述

竖直线条

在这里插入图片描述

平滑竖直线条后的结果

在这里插入图片描述

输入图片

在这里插入图片描述

水平线

在这里插入图片描述

竖直线

在这里插入图片描述

平滑竖直线条后的结果

在这里插入图片描述

4、完整代码

"""
@brief Use morphology transformations for extracting horizontal and vertical lines sample code
"""
import numpy as np
import cv2 as cvdef show_wait_destroy(winname, img):cv.imshow(winname, img)cv.moveWindow(winname, 500, 0)cv.waitKey(0)cv.destroyWindow(winname)def main(save=False):# Load the imagesrc = cv.imread("./1.jpg", cv.IMREAD_COLOR)# Check if image is loaded fineif src is None:print('Error opening image')return -1# Show source imagecv.imshow("src", src)# [load_image]# [gray]# Transform source image to gray if it is not alreadyif len(src.shape) != 2:gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)else:gray = srcif save:cv.imwrite("gray.jpg", gray)# Show gray imageshow_wait_destroy("gray", gray)# [gray]# [bin]# Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbolgray = cv.bitwise_not(gray)  # (134, 1024)if save:cv.imwrite("bitwise_not_gray.jpg", gray)bw = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, \cv.THRESH_BINARY, 15, -2)if save:cv.imwrite("adaptiveThreshold.jpg", bw)# Show binary imageshow_wait_destroy("binary", bw)# [bin]# [init]# Create the images that will use to extract the horizontal and vertical lineshorizontal = np.copy(bw)vertical = np.copy(bw)# [init]# [horiz]# Specify size on horizontal axiscols = horizontal.shape[1]  # 1024 colshorizontal_size = cols // 30  # 34# Create structure element for extracting horizontal lines through morphology operationshorizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))# Apply morphology operationshorizontal = cv.erode(horizontal, horizontalStructure)if save:cv.imwrite("erode-horizontal.jpg", horizontal)horizontal = cv.dilate(horizontal, horizontalStructure)if save:cv.imwrite("dilate-horizontal.jpg", horizontal)# Show extracted horizontal linesshow_wait_destroy("horizontal", horizontal)# [horiz]# [vert]# Specify size on vertical axisrows = vertical.shape[0]  # 134verticalsize = rows // 30  # 4# Create structure element for extracting vertical lines through morphology operationsverticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))# Apply morphology operationsvertical = cv.erode(vertical, verticalStructure)if save:cv.imwrite("erode-vertical.jpg", vertical)vertical = cv.dilate(vertical, verticalStructure)if save:cv.imwrite("dilate-vertical.jpg", vertical)# Show extracted vertical linesshow_wait_destroy("vertical", vertical)# [vert]# [smooth]# Inverse vertical imagevertical = cv.bitwise_not(vertical)if save:cv.imwrite("bitwise_not_vertical.jpg", vertical)show_wait_destroy("vertical_bit", vertical)'''Extract edges and smooth image according to the logic1. extract edges2. dilate(edges)3. src.copyTo(smooth)4. blur smooth img5. smooth.copyTo(src, edges)'''# Step 1edges = cv.adaptiveThreshold(vertical, 255, cv.ADAPTIVE_THRESH_MEAN_C, \cv.THRESH_BINARY, 3, -2)if save:cv.imwrite("step1_edges.jpg", edges)show_wait_destroy("edges", edges)# Step 2kernel = np.ones((2, 2), np.uint8)edges = cv.dilate(edges, kernel)if save:cv.imwrite("step2_edges.jpg", edges)show_wait_destroy("dilate", edges)# Step 3smooth = np.copy(vertical)# Step 4smooth = cv.blur(smooth, (2, 2))if save:cv.imwrite("step4_smooth.jpg", smooth)# Step 5(rows, cols) = np.where(edges != 0)vertical[rows, cols] = smooth[rows, cols]# Show final resultshow_wait_destroy("smooth - final", vertical)if save:cv.imwrite("smooth_final.jpg", vertical)# [smooth]return 0if __name__ == "__main__":main(save=True)

5、参考

  • Extract horizontal and vertical lines by using morphological operations

更多有趣的代码示例,可参考【Programming】

http://www.lryc.cn/news/521075.html

相关文章:

  • Redis十大数据类型详解
  • Open FPV VTX开源之betaflight配置
  • AT32 bootloader程序与上位机程序
  • 数据结构与算法之栈: LeetCode 151. 反转字符串中的单词 (Ts版)
  • 使用 configparser 读取 INI 配置文件
  • idea 自动导包,并且禁止自动导 *(java.io.*)
  • RK3588-NPU pytorch-image-models 模型编译测试
  • 低代码从“产品驱动”向“场景驱动”转型,助力数字化平台构建
  • 相加交互效应函数发布—适用于逻辑回归、cox回归、glmm模型、gee模型
  • 用gpg和sha256验证ubuntu.iso
  • 深入解析 ZooKeeper:分布式协调服务的原理与应用
  • 【Rust自学】11.10. 集成测试
  • 对当前日期进行按年、按月、按日的取值
  • 【Rust自学】12.2. 读取文件
  • C++内存泄露排查
  • Http 响应状态码 前后端联调
  • 48_Lua错误处理
  • shell脚本回顾1
  • 【3】管理无线控制器
  • SOME/IP 协议详解——服务发现
  • Flutter:封装ActionSheet 操作菜单
  • 力扣 全排列
  • Golang 设计模式
  • Matlab 具有周期性分布的死角孔的饱和空气多孔材料的声学特性
  • maven 项目怎么指定打包后名字
  • Java Web开发进阶——Spring Boot与Thymeleaf模板引擎
  • 论文笔记(四十七)Diffusion policy: Visuomotor policy learning via action diffusion(下)
  • 开始使用Panuon开源界面库环境配置并手写VS2019高仿界面
  • 新垂直电商的社交传播策略与AI智能名片2+1链动模式S2B2C商城小程序的应用探索
  • WPS计算机二级•表格函数计算