当前位置: 首页 > news >正文

玩转大语言模型——langchain调用ollama视觉多模态语言模型

系列文章目录

玩转大语言模型——ollama导入huggingface下载的模型
玩转大语言模型——langchain调用ollama视觉多模态语言模型


langchain调用ollama视觉多模态语言模型

  • 系列文章目录
  • 前言
  • 使用Ollama下载模型
    • 查找模型
    • 下载模型
  • 测试模型
    • ollama测试
    • langchain测试
      • 加载图片
      • 加载模型
    • 模型回复


前言

视觉多模态语言模型由预训练的多模态编码器、预训练的 LLM 以及连接两者的多模态接口等主要组件构成。将图像信息转换为可被语言模型处理的特征表示。拥有强大的视觉理解能力,能够准确理解图像内容,进行图像描述、视觉问答、图像定位等任务。可以与用户进行多轮交互,根据用户的文本和图像输入生成连贯、准确且有针对性的回答。本篇文章将介绍使用langchain调用ollama视觉多模态语音模型。


使用Ollama下载模型

查找模型

Ollama官网:https://ollama.com/
在这里插入图片描述
在Ollama官网上点击左上角的Models
在这里插入图片描述
选择Vision后就可以看到所有的支持视觉的模型了,在本篇文章中我们将使用llava模型进行演示,笔者也可以选择其他模型进行测试。LLaVA(Large Language and Vision Assistant)是一种多模态模型,它结合了视觉编码器和 Vicuna 以实现通用视觉和语言理解,在科学问答、数据分析和学术任务导向的视觉问答中表现出色,为研究人员提供了强大的工具。
在这里插入图片描述
左侧可以选择模型大小,模型越大一般来说效果越好,但针对测试来说7b的模型是够用的,为了兼容更多人的硬件设备,我们选用7b模型即可。右侧的就使用ollama下载模型的命令。

下载模型

打开命令行窗口,输入ollama下载模型的命令:ollama run llava,该命令会下载模型并直接执行,在初次下载成功后再执行命令不会重复下载。
执行命令后会先下载llava模型然后运行。如果想仅下载不运行,可以使用ollama pull llava
使用ollama run llava下载模型,可以直接与模型对话验证下载是否成功,如果使用的是ollama pull llava可以通过ollama list查看模型有没有被添加到列表,如果添加到列表,说明下载成功。
在这里插入图片描述


测试模型

ollama测试

下面我们用这样一张图片测试一下模型的性能。图片的路径在:D:/test_llava.png
在这里插入图片描述
打开命令行输入:ollama run llava,可以直接在提问时提出图片路径使用模型。
在这里插入图片描述
但是llava模型默认会使用英文回答,所以最好在询问的时候让模型用中文回答。从中文的回答上来看,回复内容是比较宽泛的描述,并且有可能会出错(羊驼被当作了斑羊)。这可能和模型或者模型大小有关,可以尝试其他模型测试一下,后期笔者也会写一篇相关的测试文章,请关注我的专栏。

langchain测试

加载图片

在langchain中使用视觉多模态语言模型时,图片应该是Base64编码的格式,下面介绍两种图片转Base64编码的方式。

从网络获取图片

import base64
import httpximage_url = "图片的网络链接"
image_base64 = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

从本地获取图片
从本地获取图片并不能直接读取并转换Base64编码格式,在这里我们可以编写一个函数来解决。

import base64
from PIL import Image
import iodef image_to_base64(image_path):with Image.open(image_path) as img:buffer = io.BytesIO()img.save(buffer, format="PNG")img_bytes = buffer.getvalue()img_base64 = base64.b64encode(img_bytes).decode("utf-8")return img_base64local_image_path = "D:/test_llava.png"
image_base64 = image_to_base64(local_image_path)

在函数image_to_base64中,这里使用Image.open函数打开指定路径的图片文件。ImagePIL库中的类,open方法用于打开图片文件。with语句用于确保在使用完图片资源后,自动关闭文件,释放资源,避免资源泄漏。io.BytesIO是 Python 标准库io中的类,用于在内存中创建一个二进制流缓冲区。这个缓冲区将用于存储图片数据。将打开的图片img保存到之前创建的缓冲区buffer中后,使用getvalue方法用于获取缓冲区中的所有数据然后通过base64.b64encode函数用于对二进制数据img_bytes进行 Base64 编码,返回一个字节对象。然后使用decode("utf-8")方法将字节对象转换为 UTF-8 编码的字符串,得到最终的 Base64 编码的图片字符串。

加载模型

这里使用langchain中OpenAI接口和Ollama接口分别加载模型
首先下载langchain-openailangchain-ollama包,打开命令行,分别输入:

pip install -U langchain-openai
pip install -U langchain-ollama

OpenAI模型加载

from langchain_openai import ChatOpenAImodel = ChatOpenAI(temperature=0,model="llava:latest",openai_api_base="http://localhost:11434/v1/",openai_api_key="any key"
)

因为我们在本地使用ollama下载了llava模型了,所以openai_api_baseollama提供的URL:http://localhost:11434/v1/openai_api_key可以为任何值,但不能不传这个参数或者为空并且不能是中文。
Ollama模型加载

from langchain_ollama.chat_models import ChatOllamamodel = ChatOllama(model="llava:latest", temperature=0)

使用Ollama方式加载就更简单了,不过这种方式仍然可以访问远程的URL。下面给出例子

model = ChatOllama(model="llava:latest", base_url="http://localhost:11434/v1/", stream=True, temperature=0.6)

如果要访问其他地址的ollama的URL,修改base_url参数即可。

模型回复

from langchain_core.messages import HumanMessagemessage = HumanMessage(content=[{"type": "text", "text": "描述一下这幅图,用中文回答"},{"type": "image_url","image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},},],
)
response = model.invoke([message])
print(response.content)

运行结果:
在这里插入图片描述

http://www.lryc.cn/news/520514.html

相关文章:

  • Github 2025-01-11 Rust开源项目日报 Top10
  • 【学习】【记录】【分享】微型响应系统
  • vue城市道路交通流量预测可视化系统
  • Windows7 Emacs设置及中文乱码解决
  • Python AI教程之十五:监督学习之决策树(6)高级算法C5.0决策树算法介绍
  • MOS管为什么会有夹断,夹断后为什么会有电流?该电流为什么是恒定的?
  • 网络安全-RSA非对称加密算法、数字签名
  • 【AI日记】25.01.13
  • Mysql--运维篇--空间管理(表空间,索引空间,临时表空间,二进制日志,数据归档等)
  • JVM面试相关
  • 【leetcode 13】哈希表 242.有效的字母异位词
  • Blazor开发复杂信息管理系统的优势
  • ue5 1.平A,两段连击蒙太奇。鼠标点一下,就放2段动画。2,动画混合即融合,边跑边挥剑,3,动画通知,动画到某一帧,把控制权交给蓝图。就执行蓝图节点
  • 2025,AI走向何方?暴雨技术专家为您展望
  • Threejs实现 区块链网络效应
  • 宁德时代C++后端开发面试题及参考答案
  • 【三维数域】三维数据调度-负载均衡和资源优化
  • Linux服务器网络丢包场景及解决办法
  • 【信息系统项目管理师】高分论文:论信息系统项目的采购管理(数据中台项目)
  • AI语音机器人大模型是什么?
  • 极客说|Azure AI Agent Service 结合 AutoGen/Semantic Kernel 构建多智能体解决⽅案
  • SparrowRTOS系列:链表版本内核
  • Elasticsearch—索引库操作(增删查改)
  • RabbitMQ高级篇
  • R4-LSTM学习笔记
  • Unity搭配VS Code使用
  • Go Ebiten小游戏开发:井字棋
  • 嵌入式系统中的 OpenCV 与 OpenGLES 协同应用
  • 秒懂虚拟化(二):服务器虚拟化、操作系统虚拟化、服务虚拟化全解析,通俗解读版
  • Java定时任务