当前位置: 首页 > news >正文

pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)

pytorch小记(一):pytorch矩阵乘法:torch.matmul(x, y)/ x @ y

      • 代码
      • 代码 1:`torch.matmul(x, y)`
        • 输入张量:
        • 计算逻辑:
        • 输出结果:
      • 代码 2:`y = y.view(4,1)` 再 `torch.matmul(x, y)`
        • 输入张量:
        • 计算逻辑:
        • 输出结果:
      • 总结:两种情况的区别


代码

x = torch.tensor([[1,2,3,4], [5,6,7,8]])
y = torch.tensor([2, 3, 1, 0]) # y.shape == (4)
print(torch.matmul(x, y))
print(x @ y)
>>>
tensor([11, 35])
tensor([11, 35])
x = torch.tensor([[1,2,3,4], [5,6,7,8]])
y = torch.tensor([2, 3, 1, 0]) # y.shape == (4)
y = y.view(4,1)                # y.shape == (4, 1)
'''
tensor([[2],[3],[1],[0]])
'''
print(torch.matmul(x, y))
print(x @ y)
>>>
tensor([[11],[35]])
tensor([[11],[35]])

在这段代码中,torch.matmul(x, y) 或者x @ y计算的是矩阵乘法或张量乘法。我们分两种情况详细分析:


代码 1:torch.matmul(x, y)

输入张量:
  • x 是一个 2D 张量,形状为 (2, 4)
    tensor([[1, 2, 3, 4],[5, 6, 7, 8]])
    
  • y 是一个 1D 张量,形状为 (4,)
    tensor([2, 3, 1, 0])
    
计算逻辑:

在 PyTorch 中,如果 matmul 的一个输入是 2D 张量,另一个是 1D 张量,计算规则是:

  • 将 1D 张量 y 当作列向量 (4, 1),与矩阵 x 进行矩阵乘法。
  • 结果是一个 1D 张量,形状为 (2,)

矩阵乘法公式:
result [ i ] = ∑ j x [ i , j ] ⋅ y [ j ] \text{result}[i] = \sum_j x[i, j] \cdot y[j] result[i]=jx[i,j]y[j]

具体计算步骤:

  1. 对第一行 [1, 2, 3, 4]
    ( 1 ⋅ 2 ) + ( 2 ⋅ 3 ) + ( 3 ⋅ 1 ) + ( 4 ⋅ 0 ) = 2 + 6 + 3 + 0 = 11 (1 \cdot 2) + (2 \cdot 3) + (3 \cdot 1) + (4 \cdot 0) = 2 + 6 + 3 + 0 = 11 (12)+(23)+(31)+(40)=2+6+3+0=11
  2. 对第二行 [5, 6, 7, 8]
    ( 5 ⋅ 2 ) + ( 6 ⋅ 3 ) + ( 7 ⋅ 1 ) + ( 8 ⋅ 0 ) = 10 + 18 + 7 + 0 = 35 (5 \cdot 2) + (6 \cdot 3) + (7 \cdot 1) + (8 \cdot 0) = 10 + 18 + 7 + 0 = 35 (52)+(63)+(71)+(80)=10+18+7+0=35
输出结果:
torch.matmul(x, y)
# tensor([11, 35])

代码 2:y = y.view(4,1)torch.matmul(x, y)

输入张量:
  • x 是同一个 2D 张量,形状为 (2, 4)
  • y 被重塑为 2D 张量,形状为 (4, 1)
    tensor([[2],[3],[1],[0]])
    
计算逻辑:

在这种情况下,matmul 执行的是 矩阵乘法,两个输入的形状为 (2, 4)(4, 1)

  • 矩阵乘法的规则是:前一个矩阵的列数必须等于后一个矩阵的行数
  • 结果张量的形状是 (2, 1)

矩阵乘法公式:
result [ i , k ] = ∑ j x [ i , j ] ⋅ y [ j , k ] \text{result}[i, k] = \sum_j x[i, j] \cdot y[j, k] result[i,k]=jx[i,j]y[j,k]

具体计算步骤:

  1. 对第一行 [1, 2, 3, 4] 和列向量 [[2], [3], [1], [0]]
    ( 1 ⋅ 2 ) + ( 2 ⋅ 3 ) + ( 3 ⋅ 1 ) + ( 4 ⋅ 0 ) = 2 + 6 + 3 + 0 = 11 (1 \cdot 2) + (2 \cdot 3) + (3 \cdot 1) + (4 \cdot 0) = 2 + 6 + 3 + 0 = 11 (12)+(23)+(31)+(40)=2+6+3+0=11
  2. 对第二行 [5, 6, 7, 8] 和列向量 [[2], [3], [1], [0]]
    ( 5 ⋅ 2 ) + ( 6 ⋅ 3 ) + ( 7 ⋅ 1 ) + ( 8 ⋅ 0 ) = 10 + 18 + 7 + 0 = 35 (5 \cdot 2) + (6 \cdot 3) + (7 \cdot 1) + (8 \cdot 0) = 10 + 18 + 7 + 0 = 35 (52)+(63)+(71)+(80)=10+18+7+0=35
输出结果:
torch.matmul(x, y)
# tensor([[11],
#         [35]])

总结:两种情况的区别

  1. y 是 1D 张量

    • torch.matmul(x, y) 返回一个 1D 张量,形状为 (2,)
    • 相当于将 y 当作列向量,与矩阵 x 做矩阵乘法。
  2. y 是 2D 张量

    • torch.matmul(x, y) 返回一个 2D 张量,形状为 (2, 1)
    • 矩阵乘法严格遵守二维矩阵的维度规则。

两者的结果数值相同,但形状不同,主要是因为输入张量的维度不同,导致输出的维度也发生了变化。

http://www.lryc.cn/news/519831.html

相关文章:

  • PyTorch环境配置常见报错的解决办法
  • 罗永浩再创业,这次盯上了 AI?
  • VUE3 provide 和 inject,跨越多层级组件传递数据
  • git打补丁
  • 机械燃油车知识图谱、知识大纲、知识结构(持续更新...)
  • Vue3学习总结
  • Type-C双屏显示器方案
  • 【读书与思考】焦虑与内耗
  • 基于python的网页表格数据下载--转excel
  • Vue.js开发入门:从零开始搭建你的第一个项目
  • LS1046+XILINX XDMA PCIE调通
  • HarmonyOS:@LocalBuilder装饰器: 维持组件父子关系
  • YOLOv10-1.1部分代码阅读笔记-downloads.py
  • 计算机图形学【绘制立方体和正六边形】
  • 基于django中医药数据可视化平台(源码+lw+部署文档+讲解),源码可白嫖!
  • kafka消费堆积问题探索
  • Vue.js 使用插槽(Slots)优化组件结构
  • Broker如何进行定时心跳发送和故障感知
  • 网络安全设备主要有什么
  • Android Framework WMS全面概述和知识要点
  • 记一次某红蓝演练经历
  • 一个运行在浏览器中的开源Web操作系统Puter本地部署与远程访问
  • 【零基础入门Go语言】struct 和 interface:Go语言是如何实现继承的?
  • 麦田物语学习笔记:实现拖拽物品交换数据和在地图上生成物品
  • 一些计算机零碎知识随写(25年1月)-1
  • Qt学习笔记第81到90讲
  • Centos9 + Docker 安装 MySQL8.4.0 + 定时备份数据库到本地
  • 网络原理一>UDP协议详解
  • MySQL的小问题
  • Mac——Docker desktop安装与使用教程