当前位置: 首页 > news >正文

Linux 35.6 + JetPack v5.1.4之 pytorch升级

Linux 35.6 + JetPack v5.1.4之 pytorch升级

  • 1. 源由
  • 2. 升级
    • 步骤1:获取二进制版本
    • 步骤2:安装二进制版本
    • 步骤3:获取torchvision
    • 步骤4:安装torchvision
    • 步骤5:检查安装版本
  • 3. 使用
  • 4. 补充
    • 4.1 torchvision版本问题
    • 4.2 支持pytorch版本
    • 4.3 opencv-python>=4.6.0问题

1. 源由

鉴于之前NVIDIA提供基于JetPack v5.1.4二进制pytorch版本最高为 v2.1.0

经过不断地各方努力,《Linux 35.6 + JetPack v5.1.4之编译 pytorch》,我们已经有了python3.8.0的 pytorch v2.4.1.

2. 升级

步骤1:获取二进制版本

$ wget https://github.com/SnapDragonfly/pytorch/releases/download/v2.3.1%2Bl4t35.6-cp38-cp38-aarch64/torch-2.3.1+l4t35.6-cp38-cp38-linux_aarch64.whl

步骤2:安装二进制版本

$ sudo pip3 install torch-2.3.1+l4t35.6-cp38-cp38-linux_aarch64.whl

步骤3:获取torchvision

$ git clone https://github.com/SnapDragonfly/vision.git torchvision
$ cd torchvision
$ git checkout nvidia_v0.19.1

步骤4:安装torchvision

$ export BUILD_VERSION=0.19.1
$ sudo python3 setup.py install --user
$ cd ..

步骤5:检查安装版本

$ git clone https://github.com/SnapDragonfly/jetson-fpv.git
$ cd jetson-fpv
$ sudo ./wrapper.sh version
[sudo] password for daniel:
Skipping CMD_KEYMONITOR execution for module 'version'.
Executing command on module version:Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:- P-Number: p3767-0005- Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:- Distribution: Ubuntu 20.04 focal- Release: 5.10.216-tegra
jtop:- Version: 4.2.12- Service: Active
Libraries:- CUDA: 11.4.315- cuDNN: 8.6.0.166- TensorRT: 8.5.2.2- VPI: 2.4.8- OpenCV: 4.9.0 - with CUDA: YES
DeepStream C/C++ SDK version: 6.3Python Environment:
Python 3.8.10GStreamer:                   YES (1.16.3)NVIDIA CUDA:                   YES (ver 11.4, CUFFT CUBLAS FAST_MATH)OpenCV version: 4.9.0  CUDA TrueYOLO version: 8.3.33Torch version: 2.4.1+l4t35.6Torchvision version: 0.19.1a0+6194369
DeepStream SDK version: 1.1.8

3. 使用

略,参考《Ardupilot开源无人机之Geek SDK讨论》

  • SnapDragonfly/jetson-fpv

在这里插入图片描述

$ cd jetson-fpv
$ sudo ./wrapper.sh dsyolo start

4. 补充

4.1 torchvision版本问题

若仍然使用之前NVIDIA安装 v2.1.0 版本对应的 torchvision v0.16.1 或者 0.16.2 则会出现以下报错!

$ sudo ./wrapper.sh version
Skipping CMD_KEYMONITOR execution for module 'version'.
Executing command on module version:Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:- P-Number: p3767-0005- Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:- Distribution: Ubuntu 20.04 focal- Release: 5.10.216-tegra
jtop:- Version: 4.2.12- Service: Active
Libraries:- CUDA: 11.4.315- cuDNN: 8.6.0.166- TensorRT: 8.5.2.2- VPI: 2.4.8- Vulkan: 1.3.204- OpenCV: 4.9.0 - with CUDA: YES
DeepStream C/C++ SDK version: 6.3Python Environment:
Python 3.8.10GStreamer:                   YES (1.16.3)NVIDIA CUDA:                   YES (ver 11.4, CUFFT CUBLAS FAST_MATH)OpenCV version: 4.9.0  CUDA TrueYOLO version: WARNING ⚠️ torchvision==0.16 is incompatible with torch==2.4.
Run 'pip install torchvision==0.19' to fix torchvision or 'pip install -U torch torchvision' to update both.
For a full compatibility table see https://github.com/pytorch/vision#installation
8.3.33Torch version: 2.4.1+l4t35.6Torchvision version: 0.16.1+fdea156
DeepStream SDK version: 1.1.8

4.2 支持pytorch版本

目前,支持4个pytorch版本:

  • Release pytorch-v2.4.1+l4t35.6-cp38-cp38-aarch64
  • Release pytorch-v2.3.1+l4t35.6-cp38-cp38-aarch64
  • Release pytorch_v2.2.2+l4t35.6-cp38-cp38-aarch64
  • Release pytorch_v2.1.2+l4t35.6-cp38-cp38-aarch64

4.3 opencv-python>=4.6.0问题

实际笔者环境是OpenCV4.9.0,但是还是报错;而使用python代码没有问题。

$ sudo pip3 install torch-2.4.1+l4t35.6-cp38-cp38-linux_aarch64.whl
[sudo] password for daniel:
Processing ./torch-2.4.1+l4t35.6-cp38-cp38-linux_aarch64.whl
Requirement already satisfied: jinja2 in /usr/lib/python3/dist-packages (from torch==2.4.1+l4t35.6) (2.10.1)
Requirement already satisfied: sympy in /usr/local/lib/python3.8/dist-packages (from torch==2.4.1+l4t35.6) (1.13.3)
Requirement already satisfied: fsspec in /usr/local/lib/python3.8/dist-packages (from torch==2.4.1+l4t35.6) (2024.10.0)
Requirement already satisfied: networkx in /usr/local/lib/python3.8/dist-packages (from torch==2.4.1+l4t35.6) (3.1)
Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.8/dist-packages (from torch==2.4.1+l4t35.6) (4.12.2)
Requirement already satisfied: filelock in /usr/lib/python3/dist-packages (from torch==2.4.1+l4t35.6) (3.0.12)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.8/dist-packages (from sympy->torch==2.4.1+l4t35.6) (1.3.0)
ERROR: ultralytics 8.3.33 requires opencv-python>=4.6.0, which is not installed.
Installing collected packages: torchAttempting uninstall: torchFound existing installation: torch 2.1.0a0+41361538.nv23.6Uninstalling torch-2.1.0a0+41361538.nv23.6:Successfully uninstalled torch-2.1.0a0+41361538.nv23.6
Successfully installed torch-2.4.1+l4t35.6
http://www.lryc.cn/news/516690.html

相关文章:

  • 旷视科技C++面试题及参考答案
  • C 语言函数指针 (Pointers to Functions, Function Pointers)
  • 66.基于SpringBoot + Vue实现的前后端分离-律师事务所案件管理系统(项目 + 论文)
  • Docker容器中Elasticsearch内存不足问题排查与解决方案
  • Ubuntu 下测试 NVME SSD 的读写速度
  • Neo4j的部署和操作
  • react axios 优化示例
  • 探索数字化展馆:开启科技与文化的奇幻之旅
  • 基于深度学习的视觉检测小项目(七) 开始组态界面
  • AI赋能跨境电商:魔珐科技3D数字人破解出海痛点
  • 【C/C++】nlohmann::json从文件读取json,并进行解析打印,实例DEMO
  • 安装Anaconda搭建Python环境,并使用VSCode作为IDE运行Python脚本
  • 我用AI学Android Jetpack Compose之入门篇(1)
  • 使用 Docker 查看 Elasticsearch 错误日志
  • 使用Apache Mahout制作 推荐引擎
  • Elasticsearch:利用 AutoOps 检测长时间运行的搜索查询
  • python二元表达式 三元表达式
  • 计算机网络 (22)网际协议IP
  • 【UI自动化测试】selenium八种定位方式
  • REMARK-LLM:用于生成大型语言模型的稳健且高效的水印框架
  • Android SPRD 工模测试修改
  • H3C CN3360B光纤存储交换机配置案例
  • 问题:Flask应用中的用户会话(Session)管理失效
  • Backend - C# 操作数据库 DB(ADO.NET、LINQ to SQL、EF)
  • JMeter + Grafana +InfluxDB性能监控 (二)
  • springCloud实战
  • 从优化算法到分布式训练-提升AI模型收敛速度的系统性分析【附核心实战代码】
  • 如何在 Windows 10/11 上录制带有音频的屏幕 [3 种简单方法]
  • 鸿蒙应用开发(2)
  • 单片机-LED点阵实验