当前位置: 首页 > news >正文

Pytorch单、多GPU和CPU训练模型保存和加载

Pytorch多GPU训练模型保存和加载

在多GPU训练中,模型通常被包装在torch.nn.DataParallel或torch.nn.parallel.DistributedDataParallel中,这会在模型的参数名前加上module前缀。因此,在保存模型时,需要使用model.module.state_dict()来获取模型的状态字典,以确保保存的参数名与模型定义中的参数名一致。(本质上原来的model还是存在的,参数也会同步更新)

  1. 多GPU训练模型保存
    在多GPU训练时,模型通常被包装在torch.nn.DataParallel或torch.nn.parallel.DistributedDataParallel中,这会在模型的参数名前加上module前缀。因此,在保存模型时,需要使用model.module.state_dict()来获取模型的状态字典,以确保保存的参数名与模型定义中的参数名一致。

  2. 单GPU或CPU加载模型
    当在单GPU或CPU上加载模型时,如果直接使用model.state_dict()保存的模型,由于缺少module前缀,会导致参数名不匹配,从而无法正确加载模型。因此,在保存多GPU训练的模型时,应该使用model.module.state_dict()来保存模型的状态字典,这样在单GPU或CPU上加载模型时,可以直接加载,不会出现参数名不匹配的问题。

  3. 示例代码
    以下是一个示例代码,展示了如何在多GPU训练时保存模型,并在单GPU或CPU上加载模型:

import torch
import torch.nn as nn
import os
os.os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"	#设置GPU编号
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 假设这是你的模型定义
class YourModel(nn.Module):def __init__(self):super(YourModel, self).__init__()self.fc = nn.Linear(10, 2)def forward(self, x):return self.fc(x)# 创建模型实例
model = YourModel()# 将模型移动到多GPU上
if torch.cuda.device_count() > 1:model = nn.DataParallel(model)model = model.to(device)
else:model = model.to(device)
······
# 假设这是你的训练代码,训练完成后保存模型
if torch.cuda.device_count() > 1:torch.save(model.module.state_dict(), 'model.pth')
else:torch.save(model.state_dict(), 'model.pth')# 在单、多GPU或CPU上加载模型
model = YourModel()
if torch.cuda.device_count() > 1:model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load('model.pth'))
model = model.to(device)

2 在多GPU训练得到的模型加载时,通常需要考虑以下几个步骤:

  1. 模型保存
    在多GPU训练时,模型通常被包装在torch.nn.DataParallel或torch.nn.parallel.DistributedDataParallel中。因此,在保存模型时,需要确保保存的是模型的state_dict而不是整个模型对象。例如:
if torch.cuda.device_count() > 1:torch.save(model.module.state_dict(), 'model.pth')
else:torch.save(model.state_dict(), 'model.pth')
  1. 模型加载
    在加载模型时,首先需要创建模型的实例,然后使用load_state_dict方法来加载保存的权重。如果模型是在多GPU环境下训练的,那么在加载时也应该使用torch.nn.DataParallel或torch.nn.parallel.DistributedDataParallel来包装模型。例如:
model = YourModel()
if torch.cuda.device_count() > 1:model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load('model.pth'))
model = model.to('cuda')
  1. 注意事项
    在加载模型时,需要注意以下几点:

如果模型是在多GPU环境下训练的,那么在加载时也应该使用相同数量的GPU,或者使用torch.nn.DataParallel来包装模型,即使只有一个GPU可用。
如果模型是在分布式训练环境下训练的,那么在加载时也应该使用torch.nn.parallel.DistributedDataParallel来包装模型。
如果模型是在混合精度训练(如使用了torch.cuda.amp)下训练的,那么在加载模型后,应该恢复之前的精度设置。

3 为了避免模型保存和加载出错

在多GPU训练的模型使用了torch.nn.DataParallel来包装模型,但本质上原来的model是依然存在的,且参数会同步更新:

  1. torch.nn.DataParallel 的工作原理
    torch.nn.DataParallel 是 PyTorch 提供的一个类,用于在多个 GPU 上并行训练模型。它的工作原理如下:
    模型复制:DataParallel 会在每个 GPU 上创建模型的副本。
    数据分发:输入数据会被分发到各个 GPU 上。
    前向传播:每个 GPU 上的模型副本会独立进行前向传播计算。
    梯度收集:所有 GPU 上的梯度会被收集并汇总到主 GPU 上。
    参数更新:主 GPU 上的优化器会根据汇总后的梯度更新模型参数,然后将更新后的参数同步回其他 GPU。
  2. 模型参数更新
    当你使用 model_train = torch.nn.DataParallel(model) 后,model_train 实际上是一个包装了原始模型 model 的对象。虽然 model_train 是多GPU并行的版本,但它的参数更新是通过主 GPU 上的优化器完成的,并且这些更新会同步回原始模型 model
    因此,model 的参数确实会被更新。具体来说:
    前向传播和反向传播:在 train_model 函数中,model_train 用于前向传播和反向传播。
    参数更新:优化器 optimizer 使用的是 model.parameters(),即原始模型的参数。在每次迭代中,优化器会根据汇总后的梯度更新这些参数。
    参数同步:更新后的参数会自动同步到 model_train 中的各个 GPU 副本。
    因此可以使用如下代码,加载模型和保存模型:
import torch
import torch.nn as nn
import os
os.os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"	#设置GPU编号
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 假设这是你的模型定义
class YourModel(nn.Module):def __init__(self):super(YourModel, self).__init__()self.fc = nn.Linear(10, 2)def forward(self, x):return self.fc(x)# 创建模型实例
model = YourModel()# 将模型移动到多GPU上,单GPU依然适用
if torch.cuda.device_count() > 1:model_train = nn.DataParallel(model)model_train = model_train.to(device)
else:model_train = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)#注意这是model的参数
······
output = model_train(input)	# 多卡时训练的输入和输出,注意这是model_train# 假设这是你的训练代码,训练完成后保存模型
torch.save(model.state_dict(), 'model.pth')	#注意这是model
  • 再在单/多GPU或CPU上加载模型,都不会报错,因为这里的model不是包装体,不带module
model = YourModel()
if torch.cuda.device_count() > 1:model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load('model.pth',map_location = device))
model = model.to(device)
http://www.lryc.cn/news/515959.html

相关文章:

  • Karate 介绍与快速示例(API测试自动化、模拟、性能测试与UI自动化工具)
  • Pytest 高级用法:间接参数化
  • 第07章 存储管理(一)
  • Go语言的 的设计模式(Design Patterns)核心知识
  • js函数预览图片:支持鼠标和手势拖拽缩放
  • 用QT实现 端口扫描工具1
  • 设计模式 结构型 适配器模式(Adapter Pattern)与 常见技术框架应用 解析
  • vue 项目集成 electron 和 electron 打包及环境配置
  • vscode如何离线安装插件
  • 计算机网络常见面试题及解答
  • 举例说明AI模型怎么聚类,最后神经网络怎么保存
  • HarmonyOS NEXT应用开发实战(一):边学边玩,从零开发一款影视APP
  • STM32G0B1 can Error_Handler 解决方法
  • 使用 `llama_index` 构建智能问答系统:多种文档切片方法的评估
  • 【大模型】7 天 AI 大模型学习
  • 软件工程大复习之(四)——面向对象与UML
  • 【Linux】shell命令
  • ValuesRAG:以检索增强情境学习强化文化对齐
  • 【机器学习篇】交通革命:机器学习如何引领未来的道路创新
  • DeepSeek-V3 通俗详解:从诞生到优势,以及与 GPT-4o 的对比
  • 把vue项目或者vue组件发布成npm包或者打包成lib库文件本地使用
  • 【STC库函数】Compare比较器的使用
  • 单片机-独立按键矩阵按键实验
  • 若要把普通表转成分区表,就需要先新建分区表,然后把普通表中的数据导入新建分区表。 具体怎么导入?
  • XXX公司面试真题
  • 第一节:电路连接【51单片机+A4988+步进电机教程】
  • 机器学习算法深度解析:以支持向量机(SVM)为例的实践应用
  • 解决Postman一直在转圈加载无法打开问题的方法
  • 利用 LangChain 构建对话式 AI 应用
  • 力扣--34.在排序数组中查找元素的第一个和最后一个位置