当前位置: 首页 > news >正文

AF3 AtomAttentionEncoder类的init_pair_repr方法解读

AlphaFold3 的 AtomAttentionEncoder 类中,init_pair_repr 方法方法负责为原子之间的关系计算成对表示(pair representation),这是原子转变器(atom transformer)模型的关键组成部分,直接影响对蛋白质/分子相互作用的建模。

init_pair_repr源代码:

    def init_pair_repr(self,features: Dict[str, Tensor],atom_cond: Tensor,z_trunk: Optional[Tensor],) -> Tensor:"""Compute the pair representation for the atom transformer.This is done in a separate function for checkpointing. The intermediate activations due to theatom pair representations are large and can be checkpointed to reduce memory usage.Args:features:Dictionary of input features.atom_cond:[bs, n_atoms, c_atom] The single atom conditioning from init_single_reprz_trunk:[bs, n_tokens, n_tokens, c_trunk] the pair representation from the trunkReturns:[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] The pair representation"""# Compute offsets between atom reference positionsa = partition_tensor(features['ref_pos'], self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32, 3)b = partition_tensor(features['ref_pos'], self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128, 3)offsets = a[:, :, :, None, :] - b[:, :, None, :, :]  # (bs, n_atoms // 32, 32, 128, 3)# Compute the valid maskref_space_uid = features['ref_space_uid'].unsqueeze(-1)  # (bs, n_atoms, 1)a = partition_tensor(ref_space_uid, self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32)b = partition_tensor(ref_space_uid, self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128)valid_mask = a[:, :, :, None] == b[:, :, None, :]  # (bs, n_atoms // 32, 32, 128, 1)valid_mask = valid_mask.to(offsets.dtype)  # convert boolean to binary# Embed the atom offsets and the valid masklocal_atom_pair = self.linear_atom_offsets(offsets) * valid_mask# Embed pairwise inverse squared distances, and the valid masksquared_distances = offsets.pow(2).sum(dim=-1, keepdim=True)  # (bs, n_atoms // 32, 32, 128, 1)inverse_dists = torch.reciprocal(torch.add(squared_distances, 1))local_atom_pair = local_atom_pair + self.linear_atom_distances(inverse_dists) * valid_masklocal_atom_pair = local_atom_pair + self.linear_mask(valid_mask) * valid_mask# If provided, add trunk embeddingsif self.trunk_conditioning:local_atom_pair = local_atom_pair + map_token_pairs_to_local_atom_pairs(self.proj_trunk_pair(z_trunk),features['atom_to_token'])# Add the combined single conditioning to the pair representationa = partition_tensor(self.linear_single_to_pair_row(F.relu(atom_cond)), self.n_queries, self.n_queries)b = partition_tensor(self.linear_single_to_pair_col(F.relu(atom_cond)), self.n_queries, self.n_keys)local_atom_pair = local_atom_pair + (a[:, :, :, None, :] + b[:, :, None, :, :])# Run a small MLP on the pair activationslocal_atom_pair = self.pair_mlp(local_atom_pair)return local_atom_pair

init_pair_repr代码解读:

1. 函数定义与注释
def init_pair_repr(self,features: Dict[str, Tensor],atom_cond: Tensor,z_trunk: Optional[Tensor],
) -> Tensor:"""Compute the pair representation for the atom transformer.Args:features: Dictionary of input features.atom_cond: [bs, n_atoms, c_atom] The single atom conditioning from init_single_reprz_trunk: [bs, n_tokens, n_tokens, c_trunk] the pair representation from the trunkReturns:[bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] The pair representation"""
  • 功能描述

    • 方法用于计算原子之间的成对表示(pair representation),描述原子对之间的相互关系。
    • 通过输入特征和条件化单原子表示(atom_cond)生成成对表示。
    • 如果有 trunk 模块输出(z_trunk),进一步将其纳入建模。
  • 输入参数

    • features: 包含输入原子特征的字典,例如参考位置、掩码等。
    • atom_cond: 由 init_single_repr 生成的单原子条件表示,提供单原子特征。
    • z_trunk: 可选的 trunk 模块输出,用于加入全局上下文信息。
  • 输出

    • 返回形状为 [bs, n_atoms // n_queries, n_queries, n_keys, c_atompair] 的成对表示张量。
2.  计算原子间的位移偏移量
a = partition_tensor(features['ref_pos'], self.n_queries, self.n_queries)  # (bs, n_atoms // 32, 32, 3)
b = partition_tensor(features['ref_pos'], self.n_queries, self.n_keys)  # (bs, n_atoms // 32, 128, 3)
offsets = a[:, :, :, None, :] - b[:, :, None, :, :]  # (bs, n_atoms // 32, 32, 128, 3)
  • 功能
    • 通过分块操作,将原子的三维参考位置(ref_pos)分为 query 和 key 的两个集合,计算原子对的位移向量 offsets
  • 理论基础
    • 原子间的位移向量是物理意义上的距离关系的基础,直接影响距离计算和相互作用建模。
  • 细节
    • partition_tensor 将输入张量按块划分,便于后续处理。
    • offsets 形状为 [bs, n_atoms // n_queries, n_queries, n_keys, 3]

原理解读:

什么是 features['ref_pos']

  • features['ref_pos'] 是原子在 3D 空间中的参考坐标,形状为 (bs, n_atoms, 3)
    • bs 是批量大小(batch size)。
    • n_atoms 是蛋白质中的原子数量。
    • 每个原子的坐标由 3 个值(x, y, z)表示。

为什么使用 partition_tensor

  • partition_tensor 将输入张量按滑动窗口分区,使得可以对局部子集进行高效计算。
  • 作用:通过滑动窗口对原子的参考坐标进行局部划分:
    • 第一次划分 a:窗口大小为 n_queries,滑动步长为 n_queries,即每次取 32 个原子的局部坐标。
    • 第二次划分 b:窗口大小为 n_keys,滑动步长为 n_queries,即每次取 128 个原子的局部坐标。
  • 分区后的结果:
    • a:形状为 (bs, n_atoms // 32, 32, 3),表示每个滑动窗口内的原子局部坐标(32 个)。
    • b:形状为 (bs, n_atoms // 32, 128, 3),表示每个滑动窗口内的原子扩展区域(128 个)。

 为什么计算 offset

http://www.lryc.cn/news/514846.html

相关文章:

  • DDoS攻击防御方案大全
  • Vue中常用指令
  • Servlet解析
  • 带虚继承的类对象模型
  • 深度学习中的离群值
  • 如何利用Logo设计免费生成器创建专业级Logo
  • Mysql SQL 超实用的7个日期算术运算实例(10k)
  • 运算指令(PLC)
  • 「Mac畅玩鸿蒙与硬件49」UI互动应用篇26 - 数字填色游戏
  • 机器学习经典算法——逻辑回归
  • 【数据仓库金典面试题】—— 包含详细解答
  • 【UE5 C++课程系列笔记】19——通过GConfig读写.ini文件
  • JS 中 json数据 与 base64、ArrayBuffer之间转换
  • USB 驱动开发 --- Gadget 驱动框架梳理
  • 细说STM32F407单片机中断方式CAN通信
  • Python应用指南:高德交通态势数据
  • 医学图像分析工具01:FreeSurfer || Recon -all 全流程MRI皮质表面重建
  • .NET框架用C#实现PDF转HTML
  • mamba-ssm安装
  • 网络IP协议
  • 双指针算法详解
  • MySQL的最左匹配原则是什么
  • LeetCode:106.从中序与后序遍历序列构造二叉树
  • 22. 【.NET 8 实战--孢子记账--从单体到微服务】--记账模块--切换主币种
  • 01.02周四F34-Day43打卡
  • 行业商机信息付费小程序系统开发方案
  • cut-命令详解
  • Apache MINA 反序列化漏洞CVE-2024-52046
  • 二、AI知识(神经网络)
  • node.js之---子线程(child_process)模块