当前位置: 首页 > news >正文

OpenCV相机标定与3D重建(37)计算两幅图像之间单应性矩阵(Homography Matrix)的函数findHomography()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

找到两个平面之间的透视变换。
cv::findHomography 是 OpenCV 库中用于计算两幅图像之间单应性矩阵(Homography Matrix)的函数。单应性矩阵描述了两个平面之间的投影变换关系,它在计算机视觉中用于图像校正、拼接和增强现实等任务。

函数原型


Mat cv::findHomography	
(InputArray 	srcPoints,InputArray 	dstPoints,int 	method = 0,double 	ransacReprojThreshold = 3,OutputArray 	mask = noArray(),const int 	maxIters = 2000,const double 	confidence = 0.995 
)		

参数

  • 参数srcPoints:原平面中点的坐标,可以是类型为 CV_32FC2 的矩阵或 vector。
  • 参数dstPoints:目标平面中点的坐标,可以是类型为 CV_32FC2 的矩阵或 vector。
  • 参数method:用于计算单应性矩阵的方法。可能的方法包括:
    • 0:常规方法,使用所有点,即最小二乘法。
    • RANSAC:基于RANSAC的稳健方法。
    • LMEDS:最小中值(Least-Median)稳健方法。
    • RHO:基于PROSAC的稳健方法。
  • ransacReprojThreshold:仅用于 RANSAC 和 RHO 方法。这是允许的最大重投影误差,用于将一对点视为内点。也就是说,如果
    ∥ dstPoints i − convertPointsHomogeneous ( H ⋅ srcPoints i ) ∥ 2 > ransacReprojThreshold \| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} \cdot \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold} dstPointsiconvertPointsHomogeneous(HsrcPointsi)2>ransacReprojThreshold
    则认为点 i 是离群点。如果 srcPoints 和 dstPoints 以像素为单位测量,则通常将此参数设置在1到10之间是有意义的。
  • 参数mask:由稳健方法(如 RANSAC 或 LMEDS)设置的可选输出掩码。注意输入掩码值被忽略。
  • 参数maxIters:RANSAC的最大迭代次数。
  • 参数confidence:置信水平,介于0和1之间。

该函数找到并返回源平面和目标平面之间的透视变换矩阵 H H H

s i [ x i ′ y i ′ 1 ] ∼ H [ x i y i 1 ] s_i \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \sim H \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} si xiyi1 H xiyi1
从而最小化反投影误差:
∑ i ( x i ′ − ( h 11 x i + h 12 y i + h 13 ) h 31 x i + h 32 y i + h 33 ) 2 + ( y i ′ − ( h 21 x i + h 22 y i + h 23 ) h 31 x i + h 32 y i + h 33 ) 2 \sum_i \left( \frac{x'_i - (h_{11}x_i + h_{12}y_i + h_{13})}{h_{31}x_i + h_{32}y_i + h_{33}} \right)^2 + \left( \frac{y'_i - (h_{21}x_i + h_{22}y_i + h_{23})}{h_{31}x_i + h_{32}y_i + h_{33}} \right)^2 i(h31xi+h32yi+h33xi(h11xi+h12yi+h13))2+(h31xi+h32yi+h33yi(h21xi+h22yi+h23))2
如果 method 参数设置为默认值 0,则函数使用所有点对通过简单的最小二乘方案计算初始单应性估计。

然而,如果并非所有的点对(srcPoints_i, dstPoints_i)都符合刚性的透视变换(即存在一些离群点),这个初始估计将会较差。在这种情况下,你可以使用三种稳健方法之一。RANSAC、LMEDS 和 RHO 方法尝试许多不同的随机子集(每次四个点对,共线点对被丢弃),使用这个子集和简单的最小二乘算法估计单应性矩阵,然后计算所估计单应性的质量/优度(对于RANSAC来说是内点的数量,对于LMEDS来说是最小中值重投影误差)。最佳子集随后用于生成单应性矩阵的初始估计和内点/离群点的掩码。

无论是否使用稳健方法,计算出的单应性矩阵都会进一步优化(在稳健方法的情况下仅使用内点),以Levenberg-Marquardt方法减少重投影误差。

RANSAC 和 RHO 方法可以处理几乎任何比例的离群点,但需要一个阈值来区分内点和离群点。LMEDS 方法不需要任何阈值,但只有当内点超过50%时才能正确工作。最后,如果没有离群点且噪声较小,使用默认方法(method=0)。

该函数用于找到初始的内部和外部矩阵。单应性矩阵确定至一个尺度。因此,它被标准化以使 h 33 = 1 h_{33}=1 h33=1。需要注意的是,每当无法估计 H 矩阵时,将返回一个空矩阵。

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main( int argc, char** argv )
{// 创建虚拟的匹配点数据(假设我们有4对匹配点)vector< Point2f > srcPoints = { Point2f( 56.0f, 65.0f ), Point2f( 368.0f, 52.0f ), Point2f( 28.0f, 387.0f ), Point2f( 389.0f, 390.0f ) };vector< Point2f > dstPoints = { Point2f( 0.0f, 0.0f ), Point2f( 300.0f, 0.0f ), Point2f( 0.0f, 300.0f ), Point2f( 300.0f, 300.0f ) };// 定义输出的单应性矩阵和掩码Mat homographyMatrix, mask;// 使用 RANSAC 方法计算单应性矩阵homographyMatrix = findHomography( srcPoints, dstPoints,RANSAC,   // 使用RANSAC方法3.0,      // 点到投影模型的最大重投影误差mask,     // 输出掩码2000,     // 最大迭代次数0.995 );  // 置信水平// 打印结果cout << "Homography Matrix:\n" << homographyMatrix << endl;// 打印哪些点被认为是内点cout << "Inliers mask:\n";for ( size_t i = 0; i < mask.total(); ++i ){if ( mask.at< uchar >( i ) ){cout << "Point " << i + 1 << " is an inlier." << endl;}else{cout << "Point " << i + 1 << " is an outlier." << endl;}}return 0;
}

运行结果

Homography Matrix:
[1.055873761296419, 0.09181510967794945, -65.09691276166618;0.04690100493754324, 1.125624118501043, -75.79202397907012;0.0001832514481695185, 0.0005133370013304123, 0.9999999999999999]
Inliers mask:
Point 1 is an inlier.
Point 2 is an inlier.
Point 3 is an inlier.
Point 4 is an inlier.
http://www.lryc.cn/news/512184.html

相关文章:

  • Nacos配置管理+共享配置、配置热更新
  • asp.net core系统记录当前在线人数
  • 秒杀场景的设计思考
  • 快速掌握Haproxy原理架构
  • 基于Centos7.X系统端口占用处理
  • MySQL的索引失效的原因有那些
  • Java重要面试名词整理(十):Kafka
  • 内置ALC的前置放大器D2538A/D3308
  • 04-微服务02
  • Java中的this关键字详解:深入理解与应用
  • 2、C#基于.net framework的应用开发实战编程 - 设计(二、四) - 编程手把手系列文章...
  • 设置首选网络类型以及调用Android框架层的隐藏API
  • “Gold-YOLO:基于聚合与分发机制的高效目标检测新范式”
  • 神经网络-AlexNet
  • Hutool 发送 HTTP 请求的几种常见写法
  • 【Linux】进度条
  • 【zookeeper核心源码解析】第四课:客户端与服务端读写的io核心流程
  • 强化学习蘑菇书笔记
  • 《机器学习》——线性回归模型
  • Linux(Centos 7.6)网卡信息没有了问题处理
  • WEB攻防-通用漏洞-文件上传-js验证-MIME验证-user.ini-语言特征
  • mybatis-plus代码生成器
  • 12.24-12.28Mysql锁阅读笔记
  • 支持最新 mysql9的workbench8.0.39 中文汉化教程来了
  • golang连接jenkins构建build
  • SCAU高程进阶题(自用)
  • 基于STM32F103控制L298N驱动两相四线步进电机
  • libreoffice在Windows和Linux环境的安装和结合Springboot使用教程
  • 前端开发 -- 自动回复机器人【附完整源码】
  • vue+echarts实现疫情折线图