当前位置: 首页 > news >正文

Stream API 的设计融合了多个经典设计模式

Stream API 的设计融合了多个经典设计模式:

1. 策略模式(Strategy Pattern)

策略模式定义了一个算法的家族,将每个算法封装起来,并使它们可以互换。Stream API 中的每个操作(如 filter(), map())都是一个策略,它允许用户以灵活的方式组合这些操作。

import java.util.*;
import java.util.stream.*;public class StrategyPatternDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 策略1: 过滤偶数List<Integer> evenNumbers = numbers.stream().filter(n -> n % 2 == 0)  // 策略1.collect(Collectors.toList());// 策略2: 将每个数字加倍List<Integer> doubledNumbers = numbers.stream().map(n -> n * 2)           // 策略2.collect(Collectors.toList());System.out.println("Even Numbers: " + evenNumbers);System.out.println("Doubled Numbers: " + doubledNumbers);}
}

输出:

Even Numbers: [2, 4, 6, 8, 10]
Doubled Numbers: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

上面代码中,filtermap 都是不同的策略操作,它们可以灵活地组合在一起。你可以选择不同的策略(如筛选偶数或将数字加倍),并将它们组合成一个管道来处理数据。

2. 装饰者模式(Decorator Pattern)

Stream API 中的中间操作(如 filter(), map())是典型的装饰者模式。每个中间操作都会返回一个新的流对象,逐步增强原始流的功能。

import java.util.*;
import java.util.stream.*;public class DecoratorPatternDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用装饰者模式: 先过滤偶数,再将每个数字加倍List<Integer> result = numbers.stream().filter(n -> n % 2 == 0)   // 装饰者1: 筛选偶数.map(n -> n * 2)           // 装饰者2: 每个数字加倍.collect(Collectors.toList());System.out.println("Processed Numbers: " + result);}
}

输出:

Processed Numbers: [4, 8, 12, 16, 20]

上面代码中,filtermap 是装饰者模式的实现。每个中间操作都返回一个新的流,逐步增强原始流的功能。最终的流会先过滤偶数,再将这些偶数乘以 2。

3. 惰性求值(Lazy Evaluation)

Stream API 的惰性求值意味着中间操作不会立即执行,只有在遇到终端操作时,流才会开始计算。以下是一个示例:

import java.util.*;
import java.util.stream.*;public class LazyEvaluationDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 惰性求值,只有在终端操作(forEach)执行时,流才会开始计算numbers.stream().filter(n -> {System.out.println("Filtering: " + n);return n % 2 == 0;  // 过滤偶数}).map(n -> {System.out.println("Mapping: " + n);return n * 2;       // 每个数字加倍}).forEach(n -> System.out.println("Final Result: " + n));  // 输出结果}
}

输出:

Filtering: 1
Filtering: 2
Mapping: 2
Final Result: 4
Filtering: 3
Filtering: 4
Mapping: 4
Final Result: 8
Filtering: 5
Filtering: 6
Mapping: 6
Final Result: 12
Filtering: 7
Filtering: 8
Mapping: 8
Final Result: 16
Filtering: 9
Filtering: 10
Mapping: 10
Final Result: 20

上面代码中,filtermap 都是懒执行的操作。filtermap 的计算只有在调用终端操作(forEach)时才会开始执行。可以看到,只有经过过滤和映射的元素才会打印出来。

4. 合并模式(Merging / ForkJoin)

并行流实现了合并模式,它通过 ForkJoinPool 将任务拆分成子任务并行执行,然后合并结果。以下是一个简单的并行流的示例:

import java.util.*;
import java.util.stream.*;public class ForkJoinDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用并行流执行计算int sum = numbers.parallelStream().map(n -> {System.out.println("Processing: " + n + " in thread: " + Thread.currentThread().getName());return n;}).reduce(0, Integer::sum);System.out.println("Total Sum: " + sum);}
}

输出(不同的线程名可能会有所不同):

Processing: 7 in thread: main
Processing: 6 in thread: main
Processing: 8 in thread: ForkJoinPool.commonPool-worker-2
Processing: 9 in thread: main
Processing: 10 in thread: main
Processing: 2 in thread: ForkJoinPool.commonPool-worker-2
Processing: 3 in thread: ForkJoinPool.commonPool-worker-1
Processing: 1 in thread: ForkJoinPool.commonPool-worker-2
Processing: 5 in thread: main
Processing: 4 in thread: ForkJoinPool.commonPool-worker-1
Total Sum: 55

在上面代码中,parallelStream() 会将任务分成多个子任务并行执行。每个子任务在不同的线程中处理数据,最终通过 reduce 操作将结果合并(在这个例子中是求和)。

总结:

  • 策略模式:Stream 中的每个操作(如 filter()map())都代表一个策略,可以灵活组合。
  • 装饰者模式:中间操作是装饰者,逐步增强流的功能,操作不会修改原始流。
  • 惰性求值:Stream 的中间操作(如 filter()map())在终端操作(如 forEach())触发时才会执行。
  • 合并模式:并行流通过将任务拆分成多个子任务并行执行,最终合并结果,适合多核处理器的计算密集型任务。
http://www.lryc.cn/news/510983.html

相关文章:

  • jmeter混合场景测试,设置多业务并发比例(吞吐量控制器)
  • 直流有刷电机多环控制(PID闭环死区和积分分离)
  • vue-axios+springboot实现文件流下载
  • selenium执行js
  • 每日算法Day11【左叶子之和、找树左下角的值、路径总和】
  • 分享一下使用 AI 开发个人工具的迭代过程
  • 大型语言模型(LLMs)演化树 Large Language Models
  • 部分背包问题
  • 教师管理系统
  • Word论文交叉引用一键上标
  • 集成方案 | Docusign + 蓝凌 EKP,打造一站式合同管理平台,实现无缝协作!
  • Python大数据可视化:基于python大数据的电脑硬件推荐系统_flask+Hadoop+spider
  • 【递归与回溯深度解析:经典题解精讲(下篇)】—— Leetcode
  • Spring boot处理跨域问题
  • 每日小题打卡
  • RockyLinux介绍及初始化
  • 2024年12月青少年软件编程(C语言/C++)等级考试试卷(三级)
  • 【Leecode】Leecode刷题之路第92天之反转链表II
  • StableAnimator模型的部署:复旦微软提出可实现高质量和高保真的ID一致性人类视频生成
  • 3.阿里云flinkselectdb-py作业
  • MATLAB语言的网络编程
  • 深入浅出 Linux 操作系统
  • golang实现生产者消费者模式
  • 自动化测试-Pytest测试
  • Ingress-Nginx Annotations 指南:配置要点全方面解读(下)
  • 【QED】等式构造
  • Kafka数据迁移全解析:同集群和跨集群
  • Debian安装配置RocketMQ
  • vue之axios基本使用
  • 三只脚的电感是什么东西?