当前位置: 首页 > news >正文

Unity局部和世界坐标系相互转换的实现原理

注:本篇是基于唐老师的学习视频做的一些理论实践,需要提前知道一些线性代数的基础知识,原视频链接:

8.数学基础知识学习说明_哔哩哔哩_bilibili

前期准备:

知识点①:

        Unity中需要遵守的设定:

                1、我们约定变换顺序为:缩放->旋转->平移。

                2、我们约定旋转的顺序为:Z->X->Y。

知识点②:

        1、基础变换矩阵的构成规则:

        2、平移矩阵的定义:

                A=\begin{bmatrix} 1 & 0& 0 & tx \\ 0& 1& 0& ty\\ 0& 0& 1& tz\\ 0& 0&0 & 1 \end{bmatrix}       逆矩阵     A^{-1}=\begin{bmatrix} 1 & 0 & 0 & -tx \\ 0& 1 & 0& -ty\\ 0& 0& 1 & -tz\\ 0& 0& 0& 1 \end{bmatrix}

        3、旋转矩阵的定义:    

                       绕X轴旋转\beta度:                        绕Y轴旋转\beta度:                       绕Z轴旋转\beta度:

               \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}          \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}          \begin{bmatrix} 1 & 0 & 0 & 0\\ 0& cos\beta & -sin\beta &0 \\ 0& sin\beta & cos\beta &0 \\ 0& 0 & 0 & 1 \end{bmatrix}

                因为旋转矩阵是正交矩阵,所以它的逆矩阵就是它的转置矩阵。

                即:假设有旋转矩阵A,那么 A^{-1}=A^{T}

        4、缩放矩阵的定义:

                A=\begin{bmatrix} kx & 0 & 0 & 0\\ 0 & ky & 0 & 0\\ 0 & 0 & kz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}    逆矩阵   A^{-1}=\begin{bmatrix} 1/kx & 0 & 0 & 0\\ 0 & 1/ky & 0 & 0\\ 0 & 0 & 1/kz & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

局部坐标转世界:

        我们需要明白一个概念,在3D空间中,假设有一个结点R存在一个子节点A,那么如果R就是坐标原点,A的局部坐标系就是世界坐标系。如果结点R存在旋转,平移等变换,那么A的局部坐标依旧不会变,R的变换会带动A的变换。那么最终的世界坐标满足关系式:

{A}'=M*A

M代表R的变换矩阵,A代表R在原点时的世界坐标(即局部坐标),A'代表最终的世界坐标。

再根据知识点1,得到矩阵M=平移矩阵A×旋转矩阵B×缩放矩阵C

便有如下代码:

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;public class Test : MonoBehaviour
{public Transform targetTrans;private void Start(){Vector4 startPos = new Vector4(targetTrans.localPosition.x, targetTrans.localPosition.y, targetTrans.localPosition.z, 1);Matrix4x4 scaleMatrix = ScaleMatrix(transform.localScale.x, transform.localScale.y, transform.localScale.z);Matrix4x4 rotateMatrix = RotateYMatrix(transform.eulerAngles.y)*RotateXMatrix(transform.eulerAngles.x)*RotateZMatrix(transform.eulerAngles.z);Matrix4x4 translateMatrix = TranslateMatrix(transform.position.x, transform.position.y, transform.position.z);//按照缩放->旋转(按照Z->X->Y顺序旋转)->平移的变换顺序Vector4 resPos = translateMatrix * rotateMatrix * scaleMatrix * startPos;Debug.Log(string.Format("局部坐标转世界坐标={0}",resPos));Debug.Log(string.Format("调用UnityAPI的结果={0}",transform.TransformPoint(startPos)));}//缩放矩阵private Matrix4x4 ScaleMatrix(float x,float y,float z){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = x;targetMatrix.m11 = y;targetMatrix.m22 = z;targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(X轴)private Matrix4x4 RotateXMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = 1;targetMatrix.m11 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m12 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m21 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m22 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(Y轴)private Matrix4x4 RotateYMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m02 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m11 = 1;targetMatrix.m20 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m22 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m33 = 1;return targetMatrix;}//旋转矩阵(Z轴)private Matrix4x4 RotateZMatrix(float angle){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m00 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m01 = -Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m10 = Mathf.Sin(angle * Mathf.Deg2Rad);targetMatrix.m11 = Mathf.Cos(angle * Mathf.Deg2Rad);targetMatrix.m22 = 1;targetMatrix.m33 = 1;return targetMatrix;}//平移矩阵private Matrix4x4 TranslateMatrix(float x,float y,float z){Matrix4x4 targetMatrix = new Matrix4x4();targetMatrix.m03 = x;targetMatrix.m13 = y;targetMatrix.m23 = z;targetMatrix.m00 = 1;targetMatrix.m11 = 1;targetMatrix.m22 = 1;targetMatrix.m33 = 1;return targetMatrix;}
}

挂载脚本:

我们用了Unity自带的局部转世界的APITransform.TransformPoint进行结果对比,发现最终的计算结果是一样的(忽略第四个参数1.0,代表的含义是点)。

世界坐标转局部:

        由刚刚的{A}'=M*A公式推导,其实可以得到:

                                        ​​​​​​​                M^{-1}*{A}'=A

        即局部坐标=逆变换*世界坐标

由上面的性质得到已知  矩阵M=平移矩阵A×旋转矩阵B×缩放矩阵C,那么矩阵M的逆矩阵

                                                         M^{-1}=C^{-1}*B^{-1}*A^{-1}

矩阵A,B,C的逆矩阵都可以根据知识点2得到结果,最终就可以根据世界坐标和逆变换反推导局部坐标。

http://www.lryc.cn/news/507422.html

相关文章:

  • MySQL通用语法 -DDL、DML、DQL、DCL
  • C# 6.0 连接elasticsearch数据库
  • 占个坑:利用工作以外的时间,用numpy实现MLP-手写识别
  • 抽象之诗:C++模板的灵魂与边界
  • 后端统一接口返回状态【初步模板】
  • 呼入机器人:24小时客户服务的未来趋势
  • whisper.cpp: PC端测试 -- 电脑端部署音频大模型
  • WPF ControlTemplate 控件模板
  • 序列化和反序列化(一)
  • Kubeadm+Containerd部署k8s(v1.28.2)集群(非高可用版)
  • 取子串(指针)
  • Linux系列之如何更换Centos yum源?
  • 过滤器和拦截器的区别详解
  • centos使用mkisofs构建无人值守镜像(附官方学习文档)
  • Pyside6+qml+Qtcreator项目实战
  • 秒鲨后端之MyBatis【1】环境的搭建和核心配置文件详解
  • 编译原理复习---目标代码生成
  • Winnows基础(2)
  • 酒蒙子骰子小程序系统
  • 网络安全防范
  • 重拾设计模式--组合模式
  • 红米Note 9 Pro5G刷小米官方系统
  • 渗透测试-前端加密分析之RSA加密登录(密钥来源服务器)
  • 踩准智能汽车+机器人两大风口,速腾聚创AI+机器人应用双线爆发
  • YOLOv8全解析:高效、精准的目标检测新时代——创新架构与性能提升
  • 【Python】使用Selenium 操作浏览器 自动化测试 记录
  • GDPU软件工程习题(挖空版)
  • 【活动邀请·深圳】深圳COC社区 深圳 AWS UG 2024 re:Invent re:Cap
  • Hutool工具包的常用工具类的使用介绍
  • C++简明教程(文章要求学过一点C语言)(2)