当前位置: 首页 > news >正文

使用 Python 从 ROS Bag 中提取图像:详解与实现

在机器人应用中,ROS (Robot Operating System) 是一个常见的框架。ROS Bag(rosbag)是 ROS 中用于记录和回放数据流(例如传感器数据、话题消息等)的一种强大工具。有时,我们需要将存储在 rosbag 文件中的图像数据提取并保存为图像文件以便进一步分析或处理。本文将介绍如何编写一个 Python 脚本,从 rosbag 文件中提取图像并保存为 PNG 文件。


功能概述

该脚本的主要功能包括:

  1. 读取指定的 ROS Bag 文件。
  2. 从指定的话题(Topic)中提取图像数据。
  3. 使用 OpenCV 将图像保存为 PNG 格式文件。
  4. 提供灵活的命令行参数,支持不同的输入文件、输出目录和话题。

注意:

如果ROS Bag中的图像数据为sensor_msgs/CompressedImage通过以下方式先转换为sensor_msgs/Image,重新录制一个Bag

rosrun image_transport republish compressed in:=/camera/color/image_raw raw out:=/camera/color/image_raw

脚本实现

下面是完整的 Python 脚本代码:

1. 普通RGB(sensor_msgs/Image)图像

#!/usr/bin/env python3
import argparse
import cv2
import os
import rosbag
from sensor_msgs.msg import Image
from cv_bridge import CvBridgedef extract_images_from_bag(bag_file, output_dir, image_topic):# 打开rosbag文件bag = rosbag.Bag(bag_file, 'r')bridge = CvBridge()count = 0# 读取指定话题的消息for topic, msg, t in bag.read_messages(topics=[image_topic]):try:# 将ROS消息转换为OpenCV图像cv_image = bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')except Exception as e:print(f"Error converting image: {e}")continue# 保存为图像文件image_filename = os.path.join(output_dir, f"frame_{count:06d}.png")cv2.imwrite(image_filename, cv_image)count += 1print(f"Image {count} saved to {image_filename}")# 关闭rosbag文件bag.close()print(f"Processed {count} images.")def main():# 使用argparse处理命令行参数parser = argparse.ArgumentParser(description="Extract images from a rosbag and save them as files.")parser.add_argument("bag_file", help="The rosbag file to extract images from")parser.add_argument("output_dir", help="Directory to save the extracted images")parser.add_argument("image_topic", help="Image topic to subscribe to")args = parser.parse_args()# 确保输出目录存在if not os.path.exists(args.output_dir):os.makedirs(args.output_dir)# 从rosbag中提取图像extract_images_from_bag(args.bag_file, args.output_dir, args.image_topic)if __name__ == '__main__':main()

2. 8UC3红外图像

#!/usr/bin/env python3
import argparse
import cv2
import os
import rosbag
from sensor_msgs.msg import Image
from cv_bridge import CvBridgedef extract_images_from_bag(bag_file, output_dir, image_topic):# 打开rosbag文件bag = rosbag.Bag(bag_file, 'r')bridge = CvBridge()count = 0# 读取指定话题的消息for topic, msg, t in bag.read_messages(topics=[image_topic]):try:# 检查图像的编码格式if msg.encoding == '8UC3':# 直接转换为OpenCV图像cv_image = bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')else:# 转换为指定的颜色编码(例如 'bgr8')cv_image = bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')except Exception as e:print(f"Error converting image: {e}")continue# 保存为图像文件image_filename = os.path.join(output_dir, f"frame_{count:06d}.png")cv2.imwrite(image_filename, cv_image)count += 1print(f"Image {count} saved to {image_filename}")# 关闭rosbag文件bag.close()print(f"Processed {count} images.")def main():# 使用argparse处理命令行参数parser = argparse.ArgumentParser(description="Extract images from a rosbag and save them as files.")parser.add_argument("bag_file", help="The rosbag file to extract images from")parser.add_argument("output_dir", help="Directory to save the extracted images")parser.add_argument("image_topic", help="Image topic to subscribe to")args = parser.parse_args()# 确保输出目录存在if not os.path.exists(args.output_dir):os.makedirs(args.output_dir)# 从rosbag中提取图像extract_images_from_bag(args.bag_file, args.output_dir, args.image_topic)if __name__ == '__main__':main()

脚本讲解

1. 依赖库

该脚本依赖以下库:

  • rosbag:用于读取 ROS Bag 文件。
  • cv_bridge:将 ROS 的图像消息转换为 OpenCV 格式。
  • cv2:OpenCV 的核心库,用于图像处理和文件保存。
  • argparse:用于解析命令行参数。

安装依赖库

在运行脚本前,需要确保已安装这些依赖项。以下是安装命令:

pip install opencv-python
sudo apt install python3-rosbag python3-cv-bridge

脚本功能详解

2. 主要功能模块

2.1 从 ROS Bag 中提取图像

extract_images_from_bag 函数是脚本的核心部分,主要完成以下任务:

  1. 读取 Bag 文件
    使用 rosbag.Bag 打开指定的 ROS Bag 文件以便提取数据。

  2. 遍历消息
    使用 bag.read_messages 遍历指定话题中的所有消息。

  3. 转换图像
    借助 cv_bridge 将 ROS 格式的图像消息(sensor_msgs/Image)转换为 OpenCV 格式的图像数据。

  4. 保存图像
    使用 cv2.imwrite 将提取的图像保存为 PNG 文件,文件名格式为 frame_000001.pngframe_000002.png 等。


2.2 命令行参数解析

该脚本使用 argparse 支持灵活的命令行参数配置,支持以下参数:

  • bag_file:输入的 ROS Bag 文件路径。
  • output_dir:指定提取图像保存的目标目录。
  • image_topic:ROS 话题名称,用于指定需要提取图像的话题。

通过这些参数,用户可以灵活配置脚本,处理不同的输入文件、输出路径和图像来源话题。


2.3 确保目录存在

为了确保图像可以正确保存,脚本在保存图像之前会检查目标输出目录是否存在:

  • 如果目录不存在,则使用 os.makedirs 自动创建。
  • 避免因缺少目录导致的保存失败。

3. 运行脚本

使用以下命令运行脚本:

python3 extract_images.py <bag_file> <output_dir> <image_topic>

示例

假设

  • ROS Bag 文件名data.bag
  • 输出目录output
  • 图像话题名称/camera/image_raw

运行脚本的命令

在终端中运行以下命令:

python3 extract_images.py data.bag output /camera/image_raw

输出结果

脚本运行后将执行以下操作:

1. 从指定的话题中提取图像数据:

脚本会读取 ROS Bag 文件中的图像数据,并从指定的话题(例如 /camera/image_raw)中提取图像消息。

2. 保存图像到指定的输出目录:

提取的图像会以 PNG 格式保存在 output 目录中,用户可以通过该目录查看保存的图像文件。

3. 文件命名格式:

图像文件将按照顺序命名为 frame_000001.pngframe_000002.png 等。例如,如果提取了 100 张图像,则会生成文件 frame_000001.pngframe_000100.png

4. 终端输出进度:

每提取一张图像,脚本会在终端输出其保存路径。完成后,还会显示总共提取并保存了多少张图像。


示例输出

Image 1 saved to output/frame_000001.png
Image 2 saved to output/frame_000002.png
Image 3 saved to output/frame_000003.png
...
Processed 100 images.

脚本运行完成后,用户可以在 output 目录中找到所有提取的图像文件。

http://www.lryc.cn/news/505495.html

相关文章:

  • MYSQL执行一条update语句,期间发生了什么
  • 前端性能优化思路
  • 有向图判环(leetcode207,leetcode210)
  • 概率论得学习和整理25:EXCEL 关于直方图/ 频度图 /hist图的细节,2种做hist图的方法
  • PHP8.4下webman直接使用topthink/think-orm
  • 【从零开始入门unity游戏开发之——C#篇04】栈(Stack)和堆(Heap),值类型和引用类型,以及特殊的引用类型string,垃圾回收( GC)
  • 基于微信小程序的小区疫情防控ssm+论文源码调试讲解
  • 第P2周:Pytorch实现CIFAR10彩色图片识别
  • CTFHub 命令注入-综合练习(学习记录)
  • OpenCV目标检测 级联分类器 C++实现
  • QT6 Socket通讯封装(TCP/UDP)
  • elasticsearch设置密码访问
  • 彻底理解如何优化接口性能
  • C# 位运算
  • 【Flink-scala】DataStream编程模型之状态编程
  • RabbitMQ的核心组件有哪些?
  • 【Linux基础】基本开发工具的使用
  • 常见的数据结构和应用场景
  • 爬虫基础学习
  • C++对象数组对象指针对象指针数组
  • D96【python 接口自动化学习】- pytest进阶之fixture用法
  • 【算法】动态规划中01背包问题解析
  • 选择WordPress和Shopify:搭建对谷歌SEO友好的网站
  • 代理IP与生成式AI:携手共创未来
  • iOS 应用的生命周期
  • Elasticsearch 集群快照的定期备份设置指南
  • Docker--Docker Image(镜像)
  • C++ 中的序列化和反序列化
  • 我的Github学生认证申请过程
  • 信奥题解:勾股数计算中的浮点数精度问题