当前位置: 首页 > news >正文

通过k-means对相似度较高的语句进行分类

本文介绍了如何使用K-Means算法对相似度较高的语句进行分类,并附上java案例代码

import java.util.ArrayList;
import java.util.List;
import java.util.Random;public class KMeansTextClustering {public static void main(String[] args) {// 初始化语句数据集List<String> texts = new ArrayList<>();texts.add("如果他不是老师,他就是学生");texts.add("他可能是老师也可能是学生");texts.add("他经常在学校学习");texts.add("他在学校的学习成绩很好");texts.add("老师和学生在上课");texts.add("学校是学习的地方");texts.add("老师收到定金");texts.add("学校塑料袋管理科");texts.add("开心数量肯定两个都是");texts.add("开心的两个孩子");// 设置K值(簇的数量)int K = 3;// 执行K-Means算法List<List<String>> clusters = kMeans(texts, K);// 打印聚类结果for (int i = 0; i < clusters.size(); i++) {System.out.println("Cluster " + (i + 1) + ":");for (String text : clusters.get(i)) {System.out.println(text);}System.out.println();}}public static List<List<String>> kMeans(List<String> texts, int K) {// 随机选择K个语句作为初始簇中心Random random = new Random();List<String> centroids = new ArrayList<>();for (int i = 0; i < K; i++) {centroids.add(texts.get(random.nextInt(texts.size())));}boolean isChanged;List<List<String>> clusters = new ArrayList<>();do {// 创建K个空簇clusters.clear();for (int i = 0; i < K; i++) {clusters.add(new ArrayList<>());}// 分配数据点到最近的簇中心for (String text : texts) {int closestCentroidIndex = 0;double minDistance = Double.MAX_VALUE;for (int i = 0; i < K; i++) {double similarity = 1 - calcTextSim(text, centroids.get(i)); // 使用相似度的补数作为距离if (similarity < minDistance) {minDistance = similarity;closestCentroidIndex = i;}}clusters.get(closestCentroidIndex).add(text);}// 更新簇中心isChanged = false;for (int i = 0; i < K; i++) {String newCentroid = findCentroid(clusters.get(i), centroids.get(i));if (!newCentroid.equals(centroids.get(i))) {isChanged = true;centroids.set(i, newCentroid);}}} while (isChanged);return clusters;}// 计算两个语句的相似度public static double calcTextSim(String text, String targetText) {return ChineseTextRecommender.calcTextSim(text, targetText); // 返回相似度值}// 计算簇的中心点(这里简化为返回簇中第一个元素)public static String findCentroid(List<String> cluster, String currentCentroid) {if (cluster.isEmpty()) return currentCentroid;// 存储每个语句的平均相似度double[] averageSimilarities = new double[cluster.size()];// 计算每个语句与其他语句的平均相似度for (int i = 0; i < cluster.size(); i++) {double totalSimilarity = 0.0;for (int j = 0; j < cluster.size(); j++) {if (i != j) {totalSimilarity += calcTextSim(cluster.get(i), cluster.get(j));}}averageSimilarities[i] = totalSimilarity / (cluster.size() - 1);}// 找到平均相似度最高的语句作为簇中心点int centroidIndex = 0;double maxAverageSimilarity = averageSimilarities[0];for (int i = 1; i < averageSimilarities.length; i++) {if (averageSimilarities[i] > maxAverageSimilarity) {maxAverageSimilarity = averageSimilarities[i];centroidIndex = i;}}return cluster.get(centroidIndex);}
}

相似度工具:

import com.hankcs.hanlp.tokenizer.StandardTokenizer;import java.util.*;
import java.util.stream.Collectors;public class ChineseTextRecommender {public static double calcTextSim(String text, String targetText) {Map<String, Integer> targetVector = buildTermVector(targetText);Map<String, Integer> textVector = buildTermVector(text);double similarity = cosineSimilarity(targetVector, textVector);return similarity;}public static Map<String, Integer> buildTermVector(String text) {List<String> words = StandardTokenizer.segment(text).stream().map(term -> term.word).collect(Collectors.toList());Map<String, Integer> termVector = new HashMap<>();for (String word : words) {termVector.put(word, termVector.getOrDefault(word, 0) + 1);}return termVector;}// 计算余弦相似度public static double cosineSimilarity(Map<String, Integer> vectorA, Map<String, Integer> vectorB) {double dotProduct = 0.0;double normA = 0.0;double normB = 0.0;for (String key : vectorA.keySet()) {dotProduct += vectorA.get(key) * (vectorB.getOrDefault(key, 0));normA += Math.pow(vectorA.get(key), 2);}for (String key : vectorB.keySet()) {normB += Math.pow(vectorB.get(key), 2);}if (normA == 0 || normB == 0) {return 0.0;}return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));}
}

pom依赖

        <!--  分词工具  --><dependency><groupId>com.hankcs</groupId><artifactId>hanlp</artifactId><version>portable-1.8.4</version></dependency>

打印结果:

Cluster 1:
他经常在学校学习
他在学校的学习成绩很好
学校是学习的地方
学校塑料袋管理科Cluster 2:
开心数量肯定两个都是
开心的两个孩子Cluster 3:
如果他不是老师,他就是学生
他可能是老师也可能是学生
老师和学生在上课
老师收到定金
http://www.lryc.cn/news/503113.html

相关文章:

  • 国信华源科技赋能长江蓄滞洪区水闸管护项目验收成果报道
  • HTML:表格重点
  • wine的使用方法
  • Linux服务器离线安装unzip包
  • Excel拆分脚本
  • Mybatis---事务
  • 企业直播间媒体分发新闻转播拉流推广名单(金融财经科技类)
  • 华为FreeBuds Pro 4丢了如何找回?(附查找功能使用方法)
  • 若依微服务登录密码加密传输解决方案
  • NVR小程序接入平台/设备EasyNVR深度解析H.265与H.264编码视频接入的区别
  • Redisson常用方法
  • html自带的input年月日(date) /时间(datetime-local)/星期(week)/月份(month)/时间(time)控件
  • CSS系列(12)-- 响应式设计详解
  • filecoin boost GraphQL API 查询
  • SAS - Subtractive Port
  • TCP客户端模拟链接websocket服务端
  • TypeScript 的崛起:全面解析与深度洞察
  • c#笔记2024
  • Hadoop一课一得
  • AI生成图表化:深入探索Mermaid
  • 25.DDD数量关系
  • Linux应用开发————线程池
  • Spring Boot 集成阿里云OSS 完成文件上传下载
  • 使用ERA5数据绘制风向玫瑰图的简易流程
  • 测试脚本并发多进程:pytest-xdist用法
  • 数据可视化的Python实现
  • 【Linux系列】Linux 系统配置文件详解:`/etc/profile`、`~/.bashrc` 和 `~/.bash_profile`
  • uni-app实现小程序、H5图片轮播预览、双指缩放、双击放大、单击还原、滑动切换功能
  • 游戏引擎学习第45天
  • electron常用方法