当前位置: 首页 > news >正文

LLM - 多模态大模型的开源评估工具 VLMEvalKit 部署与测试 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/144353087

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


VLMEvalKit

VLMEvalKit 是大型视觉语言模型设计的开源评估工具包,由 Open Compass 团队开发,它支持一键式评估体验,无需繁琐的数据准备工作,能够对多种视觉语言模型进行评估,并覆盖了多样化的任务场景。

VLMEvalKit:GitHub - open-compass/VLMEvalKit


1. 运行环境

准备 VLMEvalKit 工程环境:

  • Python 使用 3.11
  • 建议预先安装 PyTorch、Transformers、flash-attn 等基础 Python 库,避免冲突。
  • 注意:默认 vlmeval 库依赖较低版本的 Torch,需要重新升级 Torch 库。
git clone https://github.com/open-compass/VLMEvalKit
cd VLMEvalKitconda create -n vlm_eval_kit python=3.11
conda activate vlm_eval_kit# 预先安装
pip install torch torchvision torchaudio  # 最新版本
pip install transformers==4.45.0
# pip install flash-attn (建议手动安装)# 其次安装
pip install -r requirements.txt
pip install -e .
# 重新升级 torch 库
pip uninstall torch
pip install torch torchvision torchaudio  # 最新版本# 最后安装
pip install ipdb
pip install einops transformers_stream_generator

安装 flash-attn 参考:使用 vLLM 部署 Qwen2-VL 多模态大模型 (配置 FlashAttention) 教程

MME(Multimodal Model Evaluation) 是由腾讯优图实验室和厦门大学联合开发,多模态大型语言模型评估基准,包含 14 个子任务,覆盖从粗粒度到细粒度的对象识别、常识推理、数值计算、文本翻译和代码推理等多个方面,全面评估模型的感知和认知能力。

评测 MME 多模态数据集:

  • LLaVA-CoT 测试,请参考 LLaVA-CoT(o1) 推理模型 测试
python3 run.py --data MME --model Qwen2-VL-7B-Instruct --verbose
python3 run.py --data MME --model Llama-3.2-11B-Vision-Instruct --verbose
# python3 run.py --data MME --model LLaVA-CoT --verbose
torchrun --nproc-per-node=8 run.py --data MME --model LLaVA-CoT --verbose

Llama-3.2-11B-Vision-Instruct 显存占用 23446MiB / 81920MiB,即 23 G 左右

评估结果:

[2024-12-09 14:51:21] INFO - run.py: main - 400: 
---------------------  --------
perception             1675.9
reasoning               640.714
OCR                     155
artwork                 151.25
celebrity               149.412
code_reasoning          160
color                   180
commonsense_reasoning   155.714
count                   160
existence               195
landmark                185
numerical_calculation   125
position                155
posters                 182.993
scene                   162.25
text_translation        200
---------------------  --------

输出结果 outputs/Qwen2-VL-7B-Instruct,即:

outputs/Qwen2-VL-7B-Instruct
├── Qwen2-VL-7B-Instruct_MME.xlsx -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME.xlsx
├── Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx
├── Qwen2-VL-7B-Instruct_MME_score.csv -> outputs/Qwen2-VL-7B-Instruct/T20241209_Ga18f5d69/Qwen2-VL-7B-Instruct_MME_score.csv
└── T20241209_Ga18f5d69├── Qwen2-VL-7B-Instruct_MME.xlsx├── Qwen2-VL-7B-Instruct_MME_auxmatch.xlsx└── Qwen2-VL-7B-Instruct_MME_score.csv

其他参考 Llama-3.2-11B-Vision-Instruct 的效果

[2024-12-09 16:33:49] INFO - run.py: main - 400: 
---------------------  --------
perception             1343.25
reasoning               325.714
OCR                     125
artwork                  87
celebrity               127.353
code_reasoning           27.5
color                   143.333
commonsense_reasoning   110.714
count                   143.333
existence               190
landmark                110.5
numerical_calculation   115
position                123.333
posters                 153.401
scene                   140
text_translation         72.5
---------------------  --------

2. 工程配置

2.1 环境变量(Env)

构建环境变量,在 VLMEvalKit 中,编写 .env 格式文件,指定 模型下载路径(HF_HOME),和 数据集下载路径(LMUData),即:

HF_HOME="[your path]/huggingface/"
LMUData="[your path]/huggingface/LMUData/"

使用 from dotenv import dotenv_values 库,进行调用,参考 vlmeval/smp/misc.py

2.2 评估模型(Env)

VLMEvalKit 的模型,参考 vlmeval/config.py,包括现有的主流模型,位置默认是 HuggingFace 的下载路径 $HF_HOME,即:

model_groups = [ungrouped, api_models,xtuner_series, qwen_series, llava_series, internvl_series, yivl_series,xcomposer_series, minigpt4_series, idefics_series, instructblip_series,deepseekvl_series, janus_series, minicpm_series, cogvlm_series, wemm_series,cambrian_series, chameleon_series, video_models, ovis_series, vila_series,mantis_series, mmalaya_series, phi3_series, xgen_mm_series, qwen2vl_series, slime_series, eagle_series, moondream_series, llama_series, molmo_series,kosmos_series, points_series, nvlm_series, vintern_series, h2ovl_series, aria_series,smolvlm_series
]

如果模型无法下载,例如 Llama-3.2-11B-Vision-Instruct,修改模型路径 vlmeval/config.py,调用位置 vlmeval/vlm/llama_vision.py,即:

# vlmeval/config.py
llama_series={#  meta-llama/Llama-3.2-11B-Vision-Instruct 替换 [your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instruct'Llama-3.2-11B-Vision-Instruct': partial(llama_vision, model_path='[your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instruct'),'LLaVA-CoT': partial(llama_vision, model_path='[your path]/huggingface/Xkev/Llama-3.2V-11B-cot'),'Llama-3.2-90B-Vision-Instruct': partial(llama_vision, model_path='meta-llama/Llama-3.2-90B-Vision-Instruct'),
}# vlmeval/vlm/llama_vision.py
class llama_vision(BaseModel):INSTALL_REQ = FalseINTERLEAVE = False# This function is used to split Llama-3.2-90Bdef split_model(self):# ...# meta-llama/Llama-3.2-11B-Vision-Instruct 替换 [your path]/huggingface/meta-llama/Llama-3.2-11B-Vision-Instructdef __init__(self, model_path='meta-llama/Llama-3.2-11B-Vision-Instruct', **kwargs):

默认与 HuggingFace 下载路径一致,需要指定,则修改 vlmeval/config.py 配置。

2.3 评估集(Env)

VLMEvalKit 的数据,参考 vlmeval/dataset/__init__.py,主要支持 IMAGE_DATASETVIDEO_DATASETTEXT_DATASETCUSTOM_DATASETDATASET_COLLECTION,即:

# run.py
dataset = build_dataset(dataset_name, **dataset_kwargs)# vlmeval/dataset/__init__.py
DATASET_CLASSES = IMAGE_DATASET + VIDEO_DATASET + TEXT_DATASET + CUSTOM_DATASET + DATASET_COLLECTIONdef build_dataset(dataset_name, **kwargs):for cls in DATASET_CLASSES:if dataset_name in cls.supported_datasets():return cls(dataset=dataset_name, **kwargs)

以 MME 为例,调用的是 vlmeval/dataset/image_yorn.py 数据集,即

DATASET_URL = {'MME': 'https://opencompass.openxlab.space/utils/VLMEval/MME.tsv','HallusionBench': 'https://opencompass.openxlab.space/utils/VLMEval/HallusionBench.tsv','POPE': 'https://opencompass.openxlab.space/utils/VLMEval/POPE.tsv','AMBER': 'https://huggingface.co/datasets/yifanzhang114/AMBER_base64/resolve/main/AMBER.tsv',
}

基类 ImageBaseDataset 负责处理逻辑:

# Return a list of dataset names that are supported by this class, can override
@classmethod
def supported_datasets(cls):return list(cls.DATASET_URL)

具体位置参考,位于 LMUData 变量之中,默认位置 ~/LMUData/images/MME,即:

def LMUDataRoot():if 'LMUData' in os.environ and osp.exists(os.environ['LMUData']):return os.environ['LMUData']home = osp.expanduser('~')root = osp.join(home, 'LMUData')os.makedirs(root, exist_ok=True)return root

3. 雷达图

绘制雷达图,参考 scripts/visualize.ipynb,使用 OpenVLM.json 全量的 MLLM 评估结果,进行绘制,效果如下:

Img


Bug:

[your path]/miniconda3_62/envs/vlm_eval_kit/lib/python3.11/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)device: torch.device = torch.device(torch._C._get_default_device()),  # torch.device('cpu'),UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)device: torch.device = torch.device(torch._C._get_default_device()),  # torch.device('cpu'),

即重新安装 torch 即可:

pip uninstall torch numpy
pip3 install torch torchvision torchaudio
http://www.lryc.cn/news/502636.html

相关文章:

  • 数据结构(Queue队列)
  • Qt 图形框架下图形拖动后位置跳动问题
  • 【Linux篇】走进Linux — 开启开源操作系统之旅
  • 如何利用DBeaver配置连接MongoDB和人大金仓数据库
  • Android 车载虚拟化底层技术-Kernel 5.10 -Android12(multi-cards)技术实现
  • Qt之点击鼠标右键创建菜单栏使用(六)
  • 开发一套SDK 第一弹
  • sftp+sshpass
  • 【机器学习与数据挖掘实战】案例01:基于支持向量回归的市财政收入分析
  • Idea实现定时任务
  • Linux 安装NFS共享文件夹
  • bash 判断内存利用率是否高于60%
  • 推送(push)项目到gitlab
  • centos9升级OpenSSH
  • 硬件成本5元-USB串口采集电表数据完整方案-ThingsPanel快速入门
  • 在AWS EMR上用Hive、Spark、Airflow构建一个高效的ETL程序
  • 前端(四)css选择器、css的三大特性
  • vscode 打开 setting.json
  • 关于网络安全攻防演化博弈的研究小议
  • 【FAQ】HarmonyOS SDK 闭源开放能力 —Push Kit(7)
  • 远程桌面防护的几种方式及优缺点分析
  • ASP.NET|日常开发中连接Sqlite数据库详解
  • python的自动化seleium安装配置(包含谷歌的chromedriver)
  • QT requested database does not belong to the calling thread.线程中查询数据报错
  • 服务器一般装什么系统?
  • Linux vi/vim 编辑器使用教程
  • JavaEE多线程案例之阻塞队列
  • 梳理你的思路(从OOP到架构设计)_基本OOP知识04
  • nginx反向代理(负载均衡)
  • Android系统应用主要模块