当前位置: 首页 > news >正文

SparkSQL 读写数据攻略:从基础到实战

目录

一、输入Source

1)代码演示最普通的文件读取方式:

2) 通过jdbc读取数据库数据

3) 读取table中的数据【hive】

二、输出Sink

实战一:保存普通格式

实战二:保存到数据库中

实战三:将结果保存在hive表中

三、总结


        在大数据处理领域,SparkSQL 以其强大的数据处理能力和丰富的数据源支持备受青睐。它能够高效地读取和写入多种格式的数据,无论是本地文件、分布式文件系统(如 HDFS)上的数据,还是数据库、Hive 表中的数据,都能轻松驾驭。今天,就让我们深入探究 SparkSQL 读写数据的方式,通过详细的代码示例和原理讲解,助你全面掌握这一关键技能。

 

一、输入Source

 

  • 类型:text / csv【任意固定分隔符】 / json / orc / parquet / jdbc / table【Hive表】
  • 语法:spark.read.format(格式).load(读取的地址)

方式一:给定读取数据源的类型和地址

spark.read.format("json").load(path)
spark.read.format("csv").load(path)
spark.read.format("parquet").load(path)

方式二:直接调用对应数据源类型的方法

spark.read.json(path)
spark.read.csv(path)
spark.read.parquet(path)

特殊参数:option,用于指定读取时的一些配置选项

spark.read.format("csv").option("sep", "\t").load(path)jdbcDF = spark.read \.format("jdbc") \.option("url", "jdbc:postgresql:dbserver") \.option("dbtable", "schema.tablename") \.option("user", "username") \.option("password", "password") \.load()

 

1)代码演示最普通的文件读取方式:

from pyspark.sql import SparkSession
import osif __name__ == '__main__':# 构建环境变量# 配置环境os.environ['JAVA_HOME'] = 'D:/Program Files/Java/jdk1.8.0_271'# 配置Hadoop的路径,就是前面解压的那个路径os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1/hadoop-3.3.1'# 配置base环境Python解析器的路径os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'# 获取sparkSession对象spark = SparkSession.builder.master("local[2]").appName("第一次构建SparkSession").config("spark.sql.shuffle.partitions", 2).getOrCreate()df01 = spark.read.json("../../datas/resources/people.json")df01.printSchema()df02 = spark.read.format("json").load("../../datas/resources/people.json")df02.printSchema()df03 = spark.read.parquet("../../datas/resources/users.parquet")df03.printSchema()#spark.read.orc("")df04 = spark.read.format("orc").load("../../datas/resources/users.orc")df04.printSchema()df05 = spark.read.format("csv").option("sep",";").load("../../datas/resources/people.csv")df05.printSchema()df06 = spark.read.load(path="../../datas/resources/people.csv",format="csv",sep=";")df06.printSchema()spark.stop()

 

2) 通过jdbc读取数据库数据

先在本地数据库或者linux数据库中插入一张表:

CREATE TABLE `emp`  (`empno` int(11) NULL DEFAULT NULL,`ename` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`job` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`mgr` int(11) NULL DEFAULT NULL,`hiredate` date NULL DEFAULT NULL,`sal` decimal(7, 2) NULL DEFAULT NULL,`comm` decimal(7, 2) NULL DEFAULT NULL,`deptno` int(11) NULL DEFAULT NULL
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;-- ----------------------------
-- Records of emp
-- ----------------------------
INSERT INTO `emp` VALUES (7369, 'SMITH', 'CLERK', 7902, '1980-12-17', 800.00, NULL, 20);
INSERT INTO `emp` VALUES (7499, 'ALLEN', 'SALESMAN', 7698, '1981-02-20', 1600.00, 300.00, 30);
INSERT INTO `emp` VALUES (7521, 'WARD', 'SALESMAN', 7698, '1981-02-22', 1250.00, 500.00, 30);
INSERT INTO `emp` VALUES (7566, 'JONES', 'MANAGER', 7839, '1981-04-02', 2975.00, NULL, 20);
INSERT INTO `emp` VALUES (7654, 'MARTIN', 'SALESMAN', 7698, '1981-09-28', 1250.00, 1400.00, 30);
INSERT INTO `emp` VALUES (7698, 'BLAKE', 'MANAGER', 7839, '1981-05-01', 2850.00, NULL, 30);
INSERT INTO `emp` VALUES (7782, 'CLARK', 'MANAGER', 7839, '1981-06-09', 2450.00, NULL, 10);
INSERT INTO `emp` VALUES (7788, 'SCOTT', 'ANALYST', 7566, '1987-04-19', 3000.00, NULL, 20);
INSERT INTO `emp` VALUES (7839, 'KING', 'PRESIDENT', NULL, '1981-11-17', 5000.00, NULL, 10);
INSERT INTO `emp` VALUES (7844, 'TURNER', 'SALESMAN', 7698, '1981-09-08', 1500.00, 0.00, 30);
INSERT INTO `emp` VALUES (7876, 'ADAMS', 'CLERK', 7788, '1987-05-23', 1100.00, NULL, 20);
INSERT INTO `emp` VALUES (7900, 'JAMES', 'CLERK', 7698, '1981-12-03', 950.00, NULL, 30);
INSERT INTO `emp` VALUES (7902, 'FORD', 'ANALYST', 7566, '1981-12-03', 3000.00, NULL, 20);
INSERT INTO `emp` VALUES (7934, 'MILLER', 'CLERK', 7782, '1982-01-23', 1300.00, NULL, 10);

dept的数据:

CREATE TABLE `dept`  (`deptno` int(11) NULL DEFAULT NULL,`dname` varchar(14) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`loc` varchar(13) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;-- ----------------------------
-- Records of dept
-- ----------------------------
INSERT INTO `dept` VALUES (10, 'ACCOUNTING', 'NEW YORK');
INSERT INTO `dept` VALUES (20, 'RESEARCH', 'DALLAS');
INSERT INTO `dept` VALUES (30, 'SALES', 'CHICAGO');
INSERT INTO `dept` VALUES (40, 'OPERATIONS', 'BOSTON');

接着放驱动程序:

py4j.protocol.Py4JJavaError: An error occurred while calling o67.load.
: java.lang.ClassNotFoundException: com.mysql.cj.jdbc.Driverat java.net.URLClassLoader.findClass(URLClassLoader.java:382)at java.lang.ClassLoader.loadClass(ClassLoader.java:418)at java.lang.ClassLoader.loadClass(ClassLoader.java:351)at org.apache.spark.sql.execution.datasources.jdbc.DriverRegistry$.register(DriverRegistry.scala:46)at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.$anonfun$driverClass$1(JDBCOptions.scala:102)at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.$anonfun$driverClass$1$adapted(JDBCOptions.scala:102)

Python环境放入MySQL连接驱动

  • 找到工程中pyspark库包所在的环境,将驱动包放入环境所在的jars目录中
  • 如果是Linux上:注意集群模式所有节点都要放。

第一种情况:

假如你是windows环境:

最终的路径是在这里:

第二种情况:linux环境下,按照如下方式进行

# 进入目录
cd /opt/installs/anaconda3/lib/python3.8/site-packages/pyspark/jars# 上传jar包:mysql-connector-java-5.1.32.jar

代码练习:

import osfrom pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, DoubleType, LongTypeif __name__ == '__main__':# 获取sparkSession对象# 设置 任务的环境变量os.environ['JAVA_HOME'] = r'C:\Program Files\Java\jdk1.8.0_77'# 配置Hadoop的路径,就是前面解压的那个路径os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1/hadoop-3.3.1'# 配置base环境Python解析器的路径os.environ['PYSPARK_PYTHON'] = r'C:\ProgramData\Miniconda3\python.exe'  # 配置base环境Python解析器的路径os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'# 得到sparkSession对象spark = SparkSession.builder.master("local[2]").appName("").config("spark.sql.shuffle.partitions", 2).getOrCreate()# 处理逻辑# 读取json 数据df1 = spark.read.format("json").load("../../datas/sql/person.json")df1.show()# 另一种写法,推荐使用这一种df2 = spark.read.json("../../datas/sql/person.json")df2.show()df3 = spark.read.csv("../../datas/dept.csv")df4 = spark.read.format("csv").load("../../datas/dept.csv")# 读取分隔符为别的分隔符的文件user_schema = StructType([StructField(name="emp_id", dataType=StringType(), nullable=False),StructField(name="emp_name", dataType=StringType(), nullable=True),StructField(name="salary", dataType=DoubleType(), nullable=True),StructField(name="comm", dataType=DoubleType(), nullable=True),StructField(name="dept_id", dataType=LongType(), nullable=True)])# 使用csv 读取了一个 \t 为分隔符的文件,读取的数据字段名很随意,所以可以自定义df5 = spark.read.format("csv").option("sep","\t").load("../../datas/emp.tsv",schema=user_schema)df5.show()# 昨天的作业是否也可以有另一个写法movie_schema = StructType([StructField(name="movie_id", dataType=LongType(), nullable=False),StructField(name="movie_name", dataType=StringType(), nullable=True),StructField(name="movie_type", dataType=StringType(), nullable=True)])movieDF = spark.read.format("csv").option("sep","::").load("../../datas/zuoye/movies.dat",schema=movie_schema)movieDF.show()spark.read.load(path="../../datas/zuoye/movies.dat",format="csv",sep="::",schema=movie_schema).show()dict = {"user":"root","password":"root"}jdbcDf = spark.read.jdbc(url="jdbc:mysql://localhost:3306/spark",table="emp",properties=dict)jdbcDf.show()# jdbc的另一种写法jdbcDf2 = spark.read.format("jdbc") \.option("driver", "com.mysql.cj.jdbc.Driver") \.option("url", "jdbc:mysql://localhost:3306/spark") \.option("dbtable", "spark.dept") \.option("user", "root") \.option("password", "root").load()jdbcDf2.show()# 读取hive表中的数据# 关闭spark.stop()

 

3) 读取table中的数据【hive】

海量数据,如何处理,存储在hdfs上

第一种:

使用spark读取hdfs上的数据(可以使用sparkCore读取,也可以使用sparksql读取),将数据变为表【数据+Schema】,然后编写sql或者sparkCore代码。

rdd --> dataFrame

第二种:推荐

将hdfs上的数据映射成hive的表,然后通过sparkSql连接hive, 编写 sql 处理需求。

  • 场景:Hive底层默认是MR引擎,计算性能特别差,一般用Hive作为数据仓库,使用SparkSQL对Hive中的数据进行计算
    • 存储:数据仓库:Hive:将HDFS文件映射成表
    • 计算:计算引擎:SparkSQL、Impala、Presto:对Hive中的数据表进行处理
  • 问题:SparkSQL怎么能访问到Hive中有哪些表,以及如何知道Hive中表对应的HDFS的地址?

Hive中的表存在哪里?元数据--MySQL , 启动metastore服务即可。

本质上:SparkSQL访问了Metastore服务获取了Hive元数据,基于元数据提供的地址进行计算

先退出base环境:conda deactivate
启动服务:
启动hdfs:  start-dfs.sh  因为hive的数据在那里存储着
启动yarn:  start-yarn.sh 因为spark是根据yarn部署的,假如你的spark是standalone模式,不需要启动yarn.
日志服务也需要启动一下:
mapred --daemon start historyserver
# 启动Spark的HistoryServer:18080
/opt/installs/spark/sbin/start-history-server.sh
启动metastore服务: 因为sparkSQL需要知道表结构,和表数据的位置
hive-server-manager.sh start metastore
启动spark服务: 啥服务也没有了,已经启动完了。
查看metastore服务:
hive-server-manager.sh status metastore

修改配置:

cd /opt/installs/spark/conf
新增:hive-site.xml
vi hive-site.xml在这个文件中,编写如下配置:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>hive.metastore.uris</name><value>thrift://bigdata01:9083</value></property>
</configuration>接着将该文件进行分发:
xsync.sh hive-site.xml

操作sparkSQL:

/opt/installs/spark/bin/pyspark --master local[2] --conf spark.sql.shuffle.partitions=2

此处的pyspark更像是一个客户端,里面可以通过python编写spark代码而已。而我们以前安装的pyspark更像是spark的python运行环境。

进入后,通过内置对象spark:

>>> spark.sql("show databases").show()
+---------+
|namespace|
+---------+
|  default|
|     yhdb|
+---------+>>> spark.sql("select * from yhdb.student").show()
+---+------+                                                                    
|sid| sname|
+---+------+
|  1|laoyan|
|  1|廉德枫|
|  2|  刘浩|
|  3|  王鑫|
|  4|  司翔|
+---+------+

开发环境如何编写代码,操作hive:

Pycharm工具集成Hive开发SparkSQL,必须申明Metastore的地址和启用Hive的支持

spark = SparkSession \.builder \.appName("HiveAPP") \.master("local[2]") \.config("spark.sql.warehouse.dir", 'hdfs://bigdata01:9820/user/hive/warehouse') \.config('hive.metastore.uris', 'thrift://bigdata01:9083') \.config("spark.sql.shuffle.partitions", 2) \.enableHiveSupport()\.getOrCreate()

代码实战:

from pyspark.sql import SparkSession
import osif __name__ == '__main__':# 构建环境变量# 配置环境os.environ['JAVA_HOME'] = 'D:/Program Files/Java/jdk1.8.0_271'# 配置Hadoop的路径,就是前面解压的那个路径os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1/hadoop-3.3.1'# 配置base环境Python解析器的路径os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'# 防止在本地操作hdfs的时候,出现权限问题os.environ['HADOOP_USER_NAME'] = 'root'# 获取sparkSession对象spark = SparkSession \.builder \.appName("HiveAPP") \.master("local[2]") \.config("spark.sql.warehouse.dir", 'hdfs://bigdata01:9820/user/hive/warehouse') \.config('hive.metastore.uris', 'thrift://bigdata01:9083') \.config("spark.sql.shuffle.partitions", 2) \.enableHiveSupport() \.getOrCreate()spark.sql("select * from yhdb.student").show()spark.stop()

代码还可以这样写:

方式二:加载Hive表的数据变成DF,可以调用DSL或者SQL的方式来实现计算

# 读取Hive表构建DataFrame

hiveData = spark.read.table("yhdb.student")

hiveData.printSchema()

hiveData.show()

# 读取hive表中的数据spark2 = SparkSession \.builder \.appName("HiveAPP") \.master("local[2]") \.config("spark.sql.warehouse.dir", 'hdfs://192.168.233.128:9820/user/hive/warehouse') \.config('hive.metastore.uris', 'thrift://192.168.233.128:9083') \.config("spark.sql.shuffle.partitions", 2) \.enableHiveSupport() \.getOrCreate()#spark2.sql("show databases").show()#spark2.sql("show  tables").show()#spark2.sql("select * from yhdb.t_user").show()spark2.read.table("t_user2").show()

不要在一个python 文件中,创建两个不同的sparkSession对象,否则对于sparksql获取hive的元数据,有影响。另外,记得添加一个权限校验的语句:

# 防止在本地操作hdfs的时候,出现权限问题
os.environ['HADOOP_USER_NAME'] = 'root'

为什么有些平台不支持,不兼容 sqoop flume datax 这些工具呢?

spark 可以读取日志数据

spark 可以读取数据库数据

spark 可以读取 hdfs 数据

spark 可以读取 hive 数据

------------------------------------

spark 可以读取日志数据,形成一个 A 表,读取 mysql 数据,形成一个 B 表

A 表和 B 表还可以相互关联,此时也就不需要 sqoop、flume、datax 去导入导出了。

spark 还可以将统计出来的结果直接放入 mysql 或者直接放入 hive

--------------------

我们后面学习的内容还是沿用 将日志数据,数据库数据等所有数据抽取到 hive ,然后呢,使用 spark 去统计,统计完之后还是放入 hive ,使用 datax 等工具将结果导出 mysql。

 

二、输出Sink

 

sink --> 下沉 --> 落盘 --> 保存起来

如果输出路径或者表已经存在了怎么办

  • 类型:text /csv【所有具有固定分隔符的文件】/ json/ orc/ parquet / jdbc / table【Hive表】
  • 语法:DataFrame.write.format(保存的类型).save(保存到哪)
    • 方法:save-保存到文件save(path)或者数据库表save()中,saveAsTable-用于保存到Hive表

方式一:给定输出数据源的类型和地址

df.write.format("json").save(path)
df.write.format("csv").save(path)
df.write.format("parquet").save(path)

方式二:直接调用对应数据源类型的方法

df.write.json(path)
df.write.csv(path)
df.write.parquet(path)

特殊参数:option,用于指定输出时的一些配置选项

df.write \
.format("jdbc") \
.option("url", "jdbc:postgresql:dbserver") \
.option("dbtable", "schema.tablename") \
.option("user", "username") \
.option("password", "password") \
.save()

输出模式:Save Mode

append: 追加模式,当数据存在时,继续追加
overwrite: 覆写模式,当数据存在时,覆写以前数据,存储当前最新数据;
error/errorifexists: 如果目标存在就报错,默认的模式
ignore: 忽略,数据存在时不做任何操作

代码如何编写:

df.write.mode(saveMode="append").format("csv").save(path)

 

实战一:保存普通格式

import osfrom pyspark.sql import SparkSessionif __name__ == '__main__':# 配置环境os.environ['JAVA_HOME'] = 'C:/Program Files/Java/jdk1.8.0_241'# 配置Hadoop的路径,就是前面解压的那个路径os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1'# 配置base环境Python解析器的路径os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'spark = SparkSession.builder.master("local[2]").appName("").config("spark.sql.shuffle.partitions", 2).getOrCreate()df = spark.read.json("../../datas/person.json")# 获取年龄最大的人的名字df.createOrReplaceTempView("persons")rsDf = spark.sql("""select name,age from persons where age = (select max(age) from persons)""")# 将结果打印到控制台#rsDf.write.format("console").save()#rsDf.write.json("../../datas/result",mode="overwrite")#rsDf.write.mode(saveMode='overwrite').format("json").save("../../datas/result")#rsDf.write.mode(saveMode='overwrite').format("csv").save("../../datas/result1")#rsDf.write.mode(saveMode='overwrite').format("parquet").save("../../datas/result2")#rsDf.write.mode(saveMode='append').format("csv").save("../../datas/result1")# text 保存路径为hdfs 直接报错,不支持#rsDf.write.mode(saveMode='overwrite').text("hdfs://bigdata01:9820/result")#rsDf.write.orc("hdfs://bigdata01:9820/result",mode="overwrite")rsDf.write.parquet("hdfs://bigdata01:9820/result", mode="overwrite")spark.stop()
假如:
spark.sql("select concat(name,' ',age) from person").write.text("hdfs://bigdata01:9820/spark/result")
直接报错:假如你的输出类型是text类型,直接报错
pyspark.sql.utils.AnalysisException: Text data source does not support bigint data type.
假如修改为parquet等类型,是可以直接保存的:
rsDf.write.parquet("hdfs://bigdata01:9820/result")                                                                

 

实战二:保存到数据库中

import osfrom pyspark.sql import SparkSessionif __name__ == '__main__':# 配置环境os.environ['JAVA_HOME'] = 'C:/Program Files/Java/jdk1.8.0_241'# 配置Hadoop的路径,就是前面解压的那个路径os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1'# 配置base环境Python解析器的路径os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'spark = SparkSession.builder.master("local[2]").appName("").config("spark.sql.shuffle.partitions", 2).getOrCreate()df = spark.read.format("csv").option("sep","\t").load("../../datas/zuoye/emp.tsv").toDF("id","name","sal","comm","deptno")# 获取年龄最大的人的名字df.createOrReplaceTempView("emps")rsDf = spark.sql("""select * from emps where comm is not null""")# 不需要事先将表创建好,它可以帮助我们创建rsDf.write.format("jdbc") \.option("driver", "com.mysql.cj.jdbc.Driver") \.option("url", "jdbc:mysql://localhost:3306/spark?characterEncoding=UTF-8") \.option("user","root") \.option("password", "123456") \.option("dbtable", "emp1") \.save(mode="overwrite")spark.stop()

 

实战三:将结果保存在hive表中

import osfrom pyspark.sql import SparkSessionif __name__ == '__main__':# 配置环境os.environ['JAVA_HOME'] = 'C:/Program Files/Java/jdk1.8.0_241'# 配置Hadoop的路径,就是前面解压的那个路径os.environ['HADOOP_HOME'] = 'D:/hadoop-3.3.1'# 配置base环境Python解析器的路径os.environ['PYSPARK_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'  # 配置base环境Python解析器的路径os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/ProgramData/Miniconda3/python.exe'os.environ['HADOOP_USER_NAME'] = 'root'spark = SparkSession \.builder \.appName("测试本地连接hive") \.master("local[2]") \.config("spark.sql.warehouse.dir", 'hdfs://bigdata01:9820/user/hive/warehouse') \.config('hive.metastore.uris', 'thrift://bigdata01:9083') \.config("spark.sql.shuffle.partitions", 2) \.enableHiveSupport() \.getOrCreate()df = spark.read.format("csv").option("sep", "\t").load("../../datas/zuoye/emp.tsv").toDF("id", "name", "sal","comm", "deptno")# 获取年龄最大的人的名字df.createOrReplaceTempView("emps")rsDf = spark.sql("""select * from emps where comm is not null""")rsDf.write.saveAsTable("yhdb03.emp")spark.stop()

三、总结

        SparkSQL 读写数据功能丰富强大,涵盖多种数据源与格式,理解其原理、语法和操作细节,结合不同业务场景(如数据分析、数据迁移、数据存储优化等)灵活运用,能极大提升大数据处理效率,助力在大数据领域深挖数据价值、攻克业务难题,为数据驱动决策筑牢根基。后续实践中,多尝试不同数据、场景组合,深化掌握程度。

http://www.lryc.cn/news/501045.html

相关文章:

  • react 使用状态管理调用列表接口渲染列表(包含条件查询,统一使用查询按钮,重置功能),避免重复多次调用接口的方法
  • Stable Audio Open模型部署教程:用AI打造独家节拍,让声音焕发新活力!
  • 加油站-(贪心算法)
  • k8s-持久化存储PV与PVC(1)
  • Linux Red Hat Enterprise
  • 《中型 Vue 项目:挑战与成长》
  • 配置 DNS over HTTPS阻止DNS污染
  • Facebook广告文案流量秘诀
  • 22. 五子棋小游戏
  • fastadmin框架同时使用 阿里云oss和阿里云点播
  • Java-JMX 组件架构即详解
  • unity打包web,发送post请求,获取地址栏参数,解决TypeError:s.replaceAll is not a function
  • java+ssm+mysql校园物品租赁网
  • Spring Boot中实现JPA多数据源配置指南
  • 服务器加固
  • 探索CSS中的背景图片属性,让你的网页更加美观
  • Oracle的打开游标(OPEN_CURSORS)
  • 数值分析—数值积分
  • 克服大规模语言模型限制,构建新的应用方法——LangChain
  • 计算机网络 —— HTTPS 协议
  • React第十七章(useRef)
  • React第十五节useReducer使用详解差异
  • NanoLog起步笔记-5-客户端简要描述
  • Flink:入门介绍
  • 目标跟踪领域经典论文解析
  • 网络编程 | TCP套接字通信及编程实现经验教程
  • SAP导出表结构并保存到Excel 源码程序
  • Linux下redis环境的搭建
  • REDMI瞄准游戏赛道,推出小屏平板
  • springai结合ollama