当前位置: 首页 > news >正文

JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

目录

    • JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.中科院一区牛顿-拉夫逊优化优化算法+分解组合对比!VMD-NRBO-Transformer-BiLSTM多变量时间序列光伏功率预测,变分模态分解+牛顿-拉夫逊优化算法Transformer结合双向长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);
牛顿-拉夫逊优化算法算法(Newton-Raphson-based optimizer,NRBO)是一种全新的元启发式优化方法,其灵感来源主要基于两个关键原理:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO)。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到改进的搜索空间位置。TAO有助于NRBO避免局部最优陷阱。NRBO具有进化能力强、搜索速度快、寻优能力强的特点。这一成果由Sowmya等人于2024年2月发表在中科院2区顶级SCI期刊《Engineering Applications of Artificial Intelligence》上。。
2.算法优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;
3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
先运行main1VMD,进行vmd分解;再运行main2NRBOTransformerBiLSTM,四个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信回复JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测
X = xlsread('北半球光伏数据.xlsx','C2:E296');save origin_data XL=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.lryc.cn/news/501000.html

相关文章:

  • easyExcel实现表头批注
  • Pytest测试用例使用小结
  • LeetCode题练习与总结:132 模式--456
  • IdentityServer4框架、ASP.NET core Identity
  • 【分子材料发现】——GAP:催化过程中吸附构型的多模态语言和图学习(数据集处理详解)(二)
  • SpringBoot开发过程中经常遇到问题解决方案分享
  • AR眼镜_消费级工业AR智能眼镜主板硬件解决方案
  • Springboot 核心注解
  • Nacos集群搭建【Oracle作外部数据源】
  • 云轴科技ZStack出席中国电信国际EMCP平台香港发布会,持续推动海外合作
  • 爬虫自动化之drissionpage+SwitchyOmega实现随时切换代理ip
  • docker安装kettle(PDI)并实现web访问
  • [软件工程]十.可靠性工程(reliable engineering)
  • 【Makefile】编译日志之输出重定向符号 >
  • linux之less
  • 算法-字符串-165.比较版本号
  • List与Set、数组与ArrayList、ArrayList与LinkedList的区别
  • 如何在 Odoo18 视图中添加关联数据看板按钮 | 免费开源ERP实施诀窍
  • Linux下mysql环境的搭建
  • 视觉语言模型 Qwen2-VL
  • 浅谈新能源汽车感应钥匙一键启动的步骤和特点
  • 鸿蒙ArkTS语言基础语法详解
  • H5游戏出海如何获得更多增长机会?
  • Cmake+基础命令
  • python数据分析之爬虫基础:requests详解
  • PHP期末复习(通过30道填空题梳理知识点)
  • PostgreSQL 安装部署系列:使用YUM 方式在Centos 7.9 安装指定 PostgreSQL -15版本数据库
  • 知识图谱8:深度学习各种小模型
  • 为什么 JavaScript 中的 `new` 运算符报错?
  • Tomcat,javaweb, servlet , springBoot