当前位置: 首页 > news >正文

Spark on Yarn安装配置,大数据技能竞赛(容器环境)

Spark on Yarn模式,即把Spark作为一个客户端,将作业提交给Yarn服务,由于在生产环境中,很多时候都要与Hadoop使用同一个集群,因此采用Yarn来管理资源调度,可以有效提高资源利用率。

环境说明:

服务端登录地址详见各任务服务端说明。
补充说明:宿主机可通过Asbru工具或SSH客户端进行SSH访问;
相关软件安装包在宿主机的/opt目录下,请选择对应的安装包进行安装,用不到的可忽略;
所有任务中应用命令必须采用绝对路径;
进入Master节点的方式为
docker exec -it master /bin/bash
进入Slave1节点的方式为
docker exec -it slave1 /bin/bash
进入Slave2节点的方式为
docker exec -it slave2 /bin/bash
三个容器节点的root密码均为123456

提前准备好spark-3.1.1-bin-hadoop3.2.tgz 放在宿主机的/opt/下(模拟的自己准备,比赛时会提供)

Hadoop 完全分布式安装配置

 环境搭建请看这篇文章大数据模块A环境搭建

前提条件已经在容器里搭建完hadoop了,没搭建的请看这篇Hadoop 完全分布式安装配置

Spark on Yarn安装配置

本任务需要使用root用户完成相关配置,已安装Hadoop及需要配置前置环境,具体要求如下:

1、 从宿主机/opt目录下将文件spark-3.1.1-bin-hadoop3.2.tgz复制到容器Master中的/opt/software(若路径不存在,则需新建)中,将Spark包解压到/opt/module路径中(若路径不存在,则需新建),将完整解压命令复制粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;

第一步:从宿主机/opt目录下将文件spark-3.1.1-bin-hadoop3.2.tgz复制到容器Master中的/opt/software(若路径不存在,则需新建)中

[root@Bigdata ~]# docker cp /opt/spark-3.1.1-bin-hadoop3.2.tgz master:/opt/software

第二步:将Spark包解压到/opt/module路径中(若路径不存在,则需新建)

[root@master ~]# tar zxvf /opt/software/spark-3.1.1-bin-hadoop3.2.tgz -C /opt/module/
[root@master ~]# mv /opt/module/spark-3.1.1-bin-hadoop3.2 /opt/module/spark

2、 修改容器中/etc/profile文件,设置Spark环境变量并使环境变量生效,在/opt目录下运行命令spark-submit --version,将命令与结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;

第一步:修改容器中/etc/profile文件,设置Spark环境变量

#SPARK_HOME
export SPARK_HOME=/opt/module/spark
export PATH=$PATH:$SPARK_HOME/binc

第二步:使环境变量生效

[root@master ~]# source /etc/profile

 第三步:在/opt目录下运行命令spark-submit --version

[root@master ~]# cd /opt/
[root@master opt]# spark-submit --version
Welcome to____              __/ __/__  ___ _____/ /___\ \/ _ \/ _ `/ __/  '_//___/ .__/\_,_/_/ /_/\_\   version 3.1.1/_/Using Scala version 2.12.10, Java HotSpot(TM) 64-Bit Server VM, 1.8.0_212
Branch HEAD
Compiled by user ubuntu on 2021-02-22T01:33:19Z
Revision 1d550c4e90275ab418b9161925049239227f3dc9
Url https://github.com/apache/spark
Type --help for more information.
[root@master opt]# 

3、 完成on yarn相关配置,使用spark on yarn 的模式提交$SPARK_HOME/examples/jars/spark-examples_2.12-3.1.1.jar 运行的主类为org.apache.spark.examples.SparkPi,将运行结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下(截取Pi结果的前后各5行)。

(运行命令为:spark-submit --master yarn --class org.apache.spark.examples.SparkPi $SPARK_HOME/examples/jars/spark-examples_2.12-3.1.1.jar)

第一步:完成on yarn相关配置

  1. 修改hadoop配置文件/opt/module/hadoop/etc/hadoop/yarn-site.xml

    <!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
    <property>
    <name>yarn.nodemanager.pmem-check-enabled</name>
    <value>false</value>
    </property>
    <!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
    <property>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
    </property>

 发到其他节点(slave1,slave2)

[root@master ~]# scp /opt/module/hadoop/etc/hadoop/yarn-site.xml slave1:/opt/module/hadoop/etc/hadoop/yarn-site.xml 
[root@master ~]# scp /opt/module/hadoop/etc/hadoop/yarn-site.xml slave2:/opt/module/hadoop/etc/hadoop/yarn-site.xml 

复制一份spark-env.sh

[root@master ~]# cp /opt/module/spark/conf/spark-env.sh.template /opt/module/spark/conf/spark-env.sh

修改/opt/module/spark/conf/spark-env.sh,添加JAVA_HOME、YARN_CONF_DIR和HADOOP_CONF_DIR配置

[root@master ~]# vi /opt/module/spark/conf/spark-env.sh
export JAVA_HOME=/opt/module/java
export YARN_CONF_DIR=/opt/module/hadoop/etc/hadoop
export HADOOP_CONF_DIR=/opt/module/hadoop/etc/hadoop

启动Hadoop集群

start-all.sh

确保 /user/root//user/root/.sparkStaging/ 目录有足够的权限。

hdfs dfs -chmod -R 777 /user/root

第二步:使用spark on yarn 的模式提交$SPARK_HOME/examples/jars/spark-examples_2.12-3.1.1.jar 运行的主类为org.apache.spark.examples.SparkPi

spark-submit --master yarn --class org.apache.spark.examples.SparkPi  $SPARK_HOME/examples/jars/spark-examples_2.12-3.1.1.jar

截取Pi结果的前后各5行

声明:此文章为个人学习笔记,如文章有问题欢迎留言探讨,也希望您的指正 !

http://www.lryc.cn/news/500028.html

相关文章:

  • 遣其欲,而心自静 -- 33DAI
  • No.25 笔记 | 信息收集与Google语法的实践应用
  • GitLab基础环境部署:Ubuntu 22.04.5系统在线安装GitLab 17.5.2实操手册
  • SpringBoot3配置文件
  • 【机器学习】任务十二:循环神经网络
  • 【返璞归真】-切比雪夫不等式(Chebyshev‘s Inequality)
  • 【Django】在view中调用channel来主动进行websocket通信
  • 18.[极客大挑战 2019]BabySQL1
  • Python快速入门二:Python3 基础语法
  • 1-1 C语言链表
  • [0629].第29节:配置中心业务规则与动态刷新
  • mac: docker : Command not found解决
  • Django drf基于APIView 快速使用
  • 【MarsCode】每日一题数组 之 数字分组求偶数和
  • 解决:error: subprocess-exited-with-error 的问题
  • 使用腾讯混元(HunYuanVideo)视频模型FP8量化版本来生成绅士动画,模型体积30G,8G甜品卡可玩,2秒视频需要15分钟
  • 使用Ancona安装node,安装vue
  • 如何“安装Android SDK“?
  • 天童教育:提升孩子的语言表达能力
  • Node.js中JWT的token完整生命周期管理:从生成到销毁
  • Kotlin报错:lateinit property xxx has not been initialized
  • debian编译失败
  • flink-connector-mysql-cdc:03 mysql-cdc常见问题汇总
  • JSP技术发展现状
  • 浏览器同源策略、跨域、跨域请求,服务器处理没、跨域解决方案
  • flink-connector-mysql-cdc:02 mysql-cdc高级扩展
  • Couchbase 简介
  • 我们来学mysql -- 事务并发之幻读(原理篇)
  • Ubuntu Linux 图形界面工具管理磁盘分区和文件系统(八)
  • Eclipse IDE 各个版本的用途和区别