当前位置: 首页 > news >正文

基于 RNN(GRU, LSTM)+CNN 的红点位置检测(pytorch)

文章目录

  • 1 项目背景
  • 2 数据集
  • 3 思路
  • 4 实验结果
  • 5 代码

1 项目背景

需要在图片精确识别三跟红线所在的位置,并输出这三个像素的位置。

在这里插入图片描述
其中,每跟红线占据不止一个像素,并且像素颜色也并不是饱和度和亮度极高的红黑配色,每个红线放大后可能是这样的。

在这里插入图片描述

而我们的目标是精确输出每个红点的位置,需要精确到像素。也就是说,对于每根红线,模型需要输出橙色箭头所指的像素而不是蓝色箭头所指的像素的位置。

之前尝试过纯 RNN 的实验,也试过在 RNN 前用 CNN,给数据带上卷积的信息。在图片长度为1080、低噪声环境时,对比实验的结果如下:

实验loss完全准确的点
GRU129.66411762.0/9000 (20%)
LSTM249.20531267.0/9000 (14%)
CNN+GRU1419.5781601.0/9000 (7%)
CNN+LSTM1166.4599762.0/9000 (8%)

对的,这个方法甚至起到反效果了。问了做过类似尝试的同事,他表示效果其实跟直接使用 RNN 区别不大。

2 数据集

还是之前那个代码合成的数据集数据集,每个数据集规模在15000张图片左右,在没有加入噪音的情况下,每个样本预览如图所示:
在这里插入图片描述
加入噪音后,每个样本的预览如下图所示:

在这里插入图片描述

图中黑色部分包含比较弱的噪声,并非完全为黑色。

数据集包含两个文件,一个是文件夹,里面包含了jpg压缩的图像数据:
在这里插入图片描述
另一个是csv文件,里面包含了每个图像的名字以及3根红线所在的像素的位置。

在这里插入图片描述

3 思路

之前 CNN+RNN 的思路是把 CNN 作为一个特征提取器,RNN 作为决策模型。这次主要是想看看直接用 CNN 做决策会比 RNN 强多少,因为其实 CNN 在这类任务上的优势应该会大很多。也就是说把RNN当作一个特征提取器处理图片数据,再用CNN找到这三个点的位置。按照这个思路,RNN+CNN 的处理流程如下:

在这里插入图片描述

然后再在模型上加一点Attention:
在这里插入图片描述

4 实验结果

实验train lossval losstest losstest 完全准确样本点1平均偏移量点2平均偏移量点3平均偏移量
GRU17.115016.2752233.5694536.0/4500 (12%)3.31813.07013.3957
LSTM378.769047.6191367.7041499.0/4500 (11%)4.21663.64374.0777
CNN6.604913.6372231.4501650.0/4500 (14%)2.18163.08843.9680
CNN+RNN5.38836.683376.0979821.0/4500 (18%)1.89772.52291.8854
RNN+CNN2.65581.771428.42801318.0/4500 (29%)1.49261.36791.5234
RNN+CNN+Attention6.593842.406041.94531264.0/4500 (28%)1.58601.55571.8804
Multi-Head Attention + RNN174.501918.1041149.0297645.0/4500 (14%)2.65983.22432.4309

GRU那个妥妥过拟合,CNN 做决策效果确实暴打之前的 RNN,只能说卷积还是适合图像类的任务,RNN 这种针对序列信息的可能效果还是有限。画出前6个模型预测中三个点的偏移量,可以看出 RNN+CNN 模型的预测结果的偏差大多集中于0和1这块:
在这里插入图片描述

关于多头注意力机制在 RNN 中的效果以及注意力机制在 CNN 中的效果,我也做了实验,事实证明 CNN 中的 Attention 并不合适,起了反效果:

实验train lossval losstest losstest 完全准确样本点1平均偏移量点2平均偏移量点3平均偏移量
RNN+CNN2.65581.771428.42801318.0/4500 (29%)1.49261.36791.5234
RNN+CNN+Attention6.593842.406041.94531264.0/4500 (28%)1.58601.55571.8804
RNN(Attention)+CNN3.31993.731222.76441498.0/4500 (33%)1.47211.26091.2932
RNN+CNN(Attention)4.20124.514365.87521039.0/4500 (23%)1.58692.37051.9389

在这里插入图片描述
从上图也能看出,RNN(Attention)+CNN 的效果明显优于其他两种方案。

关于位置信息,因为在之前的实验中,对 RNN 嵌入位置信息能够显著提高模型的效果,但是在该问题中,效果不佳。这意味着位置信息其实对 CNN 的决策起到非常大的干扰作用。

实验train lossval losstest losstest 完全准确样本点1平均偏移量点2平均偏移量点3平均偏移量
RNN+CNN+Attention+Position11.966988.9042103.9887739.0/4500 (16%)2.44522.39392.3833
RNN+CNN+Attention+learnable embedding19.210223.4937223.7447473.0/4500 (11%)2.95593.00823.6864
RNN+CNN+Attention+learnable embedding with position21.565925.1544170.9156677.0/4500 (15%)2.33202.68732.9070

上表中 Position 代表采取使用 transformer 中的 sin cos 的位置编码,learnable embedding 意味着直接把 [0,seq_length] 的转化为可学习的embedding,learnable embedding with position 表示在 learnable embedding 中采用 sin cos 的位置编码作为初始化的参数。

从结果来看,无论是 transformer 的位置编码还是 learnable embedding 都没有提升原来模型表现。
在这里插入图片描述

5 代码

GRU+CNN+Attention

import torch
import torch.nn as nnclass Config(object):def __init__(self, device, csv_file, img_dir, width, input_size):self.device = deviceself.model_name = 'GRU_CNN_Attention'self.input_size = input_sizeself.hidden_size = 128self.num_layers = 2self.epoch_number = 150self.batch_size = 32self.learn_rate = 0.0002self.csv_file = csv_fileself.img_dir = img_dirself.width = widthclass GRU_CNN(nn.Module):def __init__(self, config):super(GRU_CNN, self).__init__()self.hidden_size = config.hidden_sizeself.num_layers = config.num_layersself.device = config.deviceself.sequence_length = config.widthself.channels = config.input_sizeself.gru = nn.GRU(input_size=self.channels, hidden_size=self.hidden_size, num_layers=self.num_layers,batch_first=True, bidirectional=True, dropout=0.6)self.attention = nn.MultiheadAttention(embed_dim=2 * self.hidden_size, num_heads=4, batch_first=True)self.fc = nn.Linear(2 * self.hidden_size, 4)self.conv1 = nn.Conv2d(4 + self.channels, 32, kernel_size=(1, 3), stride=1, padding=(0, 1))self.se1 = SEAttention(32)self.relu = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 3), stride=1, padding=(0, 1))self.se2 = SEAttention(64)self.pool2 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv3 = nn.Conv2d(64, 128, kernel_size=(1, 3), stride=1, padding=(0, 1))self.se3 = SEAttention(128)self.pool3 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.fc1 = nn.Linear(128 * (self.sequence_length // 8), 128)self.fc2 = nn.Linear(128, 3)def forward(self, x):rnn_x = x.squeeze(2).permute(0, 2, 1)# x = x + self.pos_encoding[:, :x.size(1), :].to(x.device)h0 = torch.zeros(self.num_layers * 2, rnn_x.size(0), self.hidden_size).to(x.device)gru_output, _ = self.gru(rnn_x, h0) # batch_size, sequence_length, 2 * hidden_sizecontext_vector, _ = self.attention(gru_output, gru_output, gru_output) # batch_size, sequence_length, 2 * hidden_sizegru_output_fc = self.fc(context_vector)  # batch_size, sequence_length, 3gru_output_fc = gru_output_fc.transpose(1, 2).unsqueeze(2)  # batch_size, 3, 1, sequence_lengthx = torch.cat((x, gru_output_fc), dim=1)x = self.pool1(self.se1(self.relu(self.conv1(x))))x = self.pool2(self.se2(self.relu(self.conv2(x))))x = self.pool3(self.se3(self.relu(self.conv3(x))))x = x.view(-1, 128 * (self.sequence_length // 8))x = self.relu(self.fc1(x))x = self.fc2(x)return xclass SEAttention(nn.Module):def __init__(self, channel, reduction=16):super(SEAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)

GRU+CNN

import torch
import torch.nn as nnclass Config(object):def __init__(self, device, csv_file, img_dir, width, input_size):self.device = deviceself.model_name = 'GRU_CNN'self.input_size = input_sizeself.hidden_size = 128self.num_layers = 2self.epoch_number = 100self.batch_size = 32self.learn_rate = 0.001self.csv_file = csv_fileself.img_dir = img_dirself.width = widthclass GRU_CNN(nn.Module):def __init__(self, config):super(GRU_CNN, self).__init__()self.hidden_size = config.hidden_sizeself.num_layers = config.num_layersself.device = config.deviceself.sequence_length = config.widthself.channels = config.input_sizeself.gru = nn.GRU(input_size=self.channels, hidden_size=self.hidden_size, num_layers=self.num_layers,batch_first=True, bidirectional=True, dropout=0.6)self.fc = nn.Linear(2 * self.hidden_size, 3)self.conv1 = nn.Conv2d(3 + self.channels, 32, kernel_size=(1, 3), stride=1, padding=(0, 1))self.relu = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 3), stride=1, padding=(0, 1))self.pool2 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv3 = nn.Conv2d(64, 128, kernel_size=(1, 3), stride=1, padding=(0, 1))self.pool3 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.fc1 = nn.Linear(128 * (self.sequence_length // 8), 128)self.fc2 = nn.Linear(128, 3)def forward(self, x):rnn_x = x.squeeze(2).permute(0, 2, 1)# x = x + self.pos_encoding[:, :x.size(1), :].to(x.device)h0 = torch.zeros(self.num_layers * 2, rnn_x.size(0), self.hidden_size).to(x.device)gru_output, _ = self.gru(rnn_x, h0) # batch_size, sequence_length, 2 * hidden_sizegru_output_fc = self.fc(gru_output)  # batch_size, sequence_length, 3gru_output_fc = gru_output_fc.transpose(1, 2).unsqueeze(2)  # batch_size, 3, 1, sequence_lengthx = torch.cat((x, gru_output_fc), dim=1)x = self.pool1(self.relu(self.conv1(x)))x = self.pool2(self.relu(self.conv2(x)))x = self.pool3(self.relu(self.conv3(x)))x = x.view(-1, 128 * (self.sequence_length // 8))x = self.relu(self.fc1(x))x = self.fc2(x)return x

learnable embedding 与 transformer 编码的结合:

class GRU_CNN(nn.Module):def __init__(self, config):super(GRU_CNN, self).__init__()self.hidden_size = config.hidden_sizeself.num_layers = config.num_layersself.device = config.deviceself.sequence_length = config.widthself.channels = config.input_sizeself.gru = nn.GRU(input_size=self.channels, hidden_size=self.hidden_size, num_layers=self.num_layers,batch_first=True, bidirectional=True, dropout=0.6)self.attention = nn.MultiheadAttention(embed_dim=2 * self.hidden_size, num_heads=4, batch_first=True)self.fc = nn.Linear(2 * self.hidden_size, 4)self.conv1 = nn.Conv2d(4 + self.channels, 32, kernel_size=(1, 3), stride=1, padding=(0, 1))self.relu = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 3), stride=1, padding=(0, 1))self.pool2 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.conv3 = nn.Conv2d(64, 128, kernel_size=(1, 3), stride=1, padding=(0, 1))self.pool3 = nn.MaxPool2d(kernel_size=(1, 2), stride=(1, 2))self.fc1 = nn.Linear(128 * (self.sequence_length // 8), 128)self.fc2 = nn.Linear(128, 3)self.positional_embedding = self.generate_positional_encoding(config.width, self.channels).to(self.device)def generate_positional_encoding(self, seq_length, d_model):def generate_sin_cos_positional_encoding(seq_len, d_model):pos = torch.arange(seq_len).unsqueeze(1)  # (seq_len, 1)div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))  # (d_model / 2)pe = torch.zeros(seq_len, d_model)pe[:, 0::2] = torch.sin(pos * div_term)pe[:, 1::2] = torch.cos(pos * div_term)return pepositional_encoding = generate_sin_cos_positional_encoding(seq_length, d_model)embedding = nn.Embedding(seq_length, d_model)embedding.weight = nn.Parameter(positional_encoding, requires_grad=True)return embeddingdef forward(self, x):rnn_x = x.squeeze(2).permute(0, 2, 1)positions = torch.arange(rnn_x.size(1), device=x.device).unsqueeze(0).expand(rnn_x.size(0), -1)rnn_x = rnn_x + self.positional_embedding(positions)h0 = torch.zeros(self.num_layers * 2, rnn_x.size(0), self.hidden_size).to(x.device)gru_output, _ = self.gru(rnn_x, h0) # batch_size, sequence_length, 2 * hidden_sizecontext_vector, _ = self.attention(gru_output, gru_output, gru_output) # batch_size, sequence_length, 2 * hidden_sizegru_output_fc = self.fc(context_vector)  # batch_size, sequence_length, 3gru_output_fc = gru_output_fc.transpose(1, 2).unsqueeze(2)  # batch_size, 3, 1, sequence_lengthx = torch.cat((x, gru_output_fc), dim=1)x = self.pool1(self.relu(self.conv1(x)))x = self.pool2(self.relu(self.conv2(x)))x = self.pool3(self.relu(self.conv3(x)))x = x.view(-1, 128 * (self.sequence_length // 8))x = self.relu(self.fc1(x))x = self.fc2(x)return x
http://www.lryc.cn/news/499384.html

相关文章:

  • L2G3000-LMDeploy 量化部署实践
  • verilog编程规范
  • 飞飞5.4游戏源码(客户端+服务端+工具完整源代码+5.3fix+5.4patch+数据库可编译进游戏)
  • 【MySQL】——​​用一文领悟表的增删查改
  • Zabbix监控Oracle 19c数据库完整配置指南
  • 静态路由与交换机配置实验
  • 【jvm】讲讲jvm中的gc
  • openlayers地图事件
  • 杂记9---一些场景git操作汇总
  • Mysql索引,聚簇索引,非聚簇索引,回表查询
  • 【优选算法 二分查找】二分查找算法入门详解:二分查找小专题
  • 如何将CSDN博客下载为PDF文件
  • pdf转word/markdown等格式——MinerU的部署:2024最新的智能数据提取工具
  • 2024年下半年网络工程师案例分析真题及答案解析
  • English phonetic symbol
  • 普及组集训--图论最短路径设分层图
  • SYN6288语音合成模块使用说明(MicroPython、STM32、Arduino)
  • Spring完整知识三(完结)
  • 保姆级教程Docker部署Redis镜像
  • 子类有多个父类的情况下Super不支持指定父类来调用方法
  • AI大模型ollama结合Open-webui
  • RK3568笔记2:NOR_Flash和NAND_Flash与SDMMC和eMMC
  • windows python qt5 QChartView画折线图
  • 阿里云通义千问:全面解析智能云服务先锋
  • QT 贪吃蛇
  • 二、点亮希望之光:寄存器与库函数驱动 LED 灯
  • Oracle 用户管理模式下的恢复案例-不完全恢复
  • SharpDevelop IDE IViewContent.cs类
  • Unity RectTransUtility工具类
  • React性能优化