当前位置: 首页 > news >正文

证明切平面过定点的曲面是锥面

目录

  • 证明:切平面过定点的曲面是锥面.

证明:切平面过定点的曲面是锥面.

证明:

方法一:

设曲面 S : r = r ( u , v ) S:\mathbf{r}=\mathbf{r}(u,v) S:r=r(u,v)的切平面过定点 P 0 P_0 P0,其位置向量为 p 0 . \mathbf{p}_0. p0.

r ( u , v ) − p 0 = λ ( u , v ) r u + μ ( u , v ) r v , \mathbf{r}(u,v)-\mathbf{p}_0=\lambda(u,v)\mathbf{r}_u+\mu(u,v)\mathbf{r}_v, r(u,v)p0=λ(u,v)ru+μ(u,v)rv,

其中 λ ( u , v ) , μ ( u , v ) \lambda(u,v),\mu(u,v) λ(u,v),μ(u,v) 是光滑函数.从而,
r u = λ u r u + λ r u u + μ u r v + μ r u v , r v = λ v r u + λ r u v + μ v r v + μ r v v . \mathbf{r}_u=\lambda_u\mathbf{r}_u+\lambda\mathbf{r}_{uu}+\mu_u\mathbf{r}_v+\mu\mathbf{r}_{uv},\quad\mathbf{r}_v=\lambda_v\mathbf{r}_u+\lambda\mathbf{r}_{uv}+\mu_v\mathbf{r}_v+\mu\mathbf{r}_{vv}. ru=λuru+λruu+μurv+μruv,rv=λvru+λruv+μvrv+μrvv.
将以上两式与 n 作内积,有
λ L + μ M = 0 , λ M + μ N = 0. \lambda L+\mu M=0,\\\lambda M+\mu N=0. λL+μM=0,λM+μN=0.

λ ( L N − M 2 ) = 0 , μ ( L N − M 2 ) = 0. \lambda(LN-M^2)=0,\\\mu(LN-M^2)=0. λ(LNM2)=0,μ(LNM2)=0.
由于 λ ( u , v ) , μ ( u , v ) \lambda(u,v),\mu(u,v) λ(u,v),μ(u,v)只在一点同时为0,故 L N − M 2 = 0. LN-M^2=0. LNM2=0.从而,Gauss 曲率 K = L N − M 2 E G − F 2 = 0. K=\frac{LN-M^2}{EG-F^2}=0. K=EGF2LNM2=0.
S S S上的点 P P P是非脐点,则在它的一个小邻域内, S S S无脐点.

对应于两个主方向量场,在更小的邻域内, S S S 有正交参数,仍记为 ( u , v ) . ( u, v) . (u,v). (对应的参数曲线是正交曲率线)

而由 K = 0 K=0 K=0,此小邻域内每点都是严格抛物点(非平点), 只沿一个方向法曲率为 0. 故其中一族参数曲线是曲率线且是渐近线.

而沿着方向 r ( u , v ) − p 0 \mathbf{r}(u,v)-\mathbf{p}_0 r(u,v)p0,法曲率

k n ( r ( u , v ) − p 0 ) = L λ 2 + 2 M λ μ + N μ 2 E λ 2 + 2 F λ μ + G μ 2 = 0. k_n(\mathbf{r}(u,v)-\mathbf{p}_0)=\frac{L\lambda^2+2M\lambda\mu+N\mu^2}{E\lambda^2+2F\lambda\mu+G\mu^2}=0. kn(r(u,v)p0)=Eλ2+2Fλμ+Gμ2Lλ2+2Mλμ+Nμ2=0.

因此,这族曲率渐近线的切方向都过同一定点 P 0 . P_0. P0.由习题二 9 (1),它们必是一束直线.

现在设 S S S上点 P P P是脐点,则它是平点.若存在 P P P的一个邻域, S S S上每点都是平点.则 S S S在此邻域内是平面的一部分.若 P P P不存在这样的邻域,则在 P P P的附近脐点的轨迹至多是一些曲线,不能决定曲面的形状。
综上所述,曲面 S S S上每点都在曲面上的一条直线上且所有这些直线过定点,

: S :S :S 是锥面.

方法二:

设曲面 S S S的所有切平面过定点 P 0 . P_0. P0.取曲面上任意点 P ≠ P 0 . P\neq P_0. P=P0.设点 P 0 P_0 P0与过点 P P P法线张成的平面为 Π \Pi Π,而曲面 S S S与平面 Π \Pi Π的相交曲线为 C . C. C.对于 C C C上任意一点 Q Q Q,直线 P ‾ 0 Q \overline P_0Q P0Q在平面 II 中.

而由假设, S S S的切平面都过 P 0 P_0 P0,故在 Q Q Q点附近曲线 C C C只在直线 P ‾ 0 Q \overline P_0Q P0Q的一侧.,点 Q Q Q是平面 Π \Pi Π中曲线 C C C的高度函数的极小值点,故直线 P ‾ 0 Q \overline P_{0}Q P0Q是曲线 C C C在点 Q Q Q的切线.因此,曲线 C C C 必是直线.因此 , S ,S ,S 由过定点的直线构成,是锥面.

http://www.lryc.cn/news/498796.html

相关文章:

  • python中数组怎么转换为字符串
  • Linux 查看运行了哪些服务
  • WPS EXCEL 使用 WPS宏编辑器 写32位十六进制数据转换为浮点小数的公式。
  • SpringMVC ——(1)
  • 嵌入式中防linux的通用MCU系统
  • Windows电脑伪关机(快速启动模式),怎么真关机
  • 远程修改ESXi 6.7管理IP地址
  • DICOM医学影象应用篇——多平面重建(MPR)在DICOM医学影像中的应用详解
  • chromedriver.exe编译
  • CVPR和其他2024顶会论文阅读(资源整理【1】)
  • 封闭式论文写作--全面掌握ChatGPT-4o的写作技能,掌握提示词使用技巧、文献检索与分析方法,帮助您选定研究方向,提炼学术论文题目
  • ThinkPad X250在 FreeBSD xfce4下小红点不能用、触摸板不能用以及键盘上下左右变成其它键
  • PowerShell install 一键部署postgres17
  • k8s的数据库etcd报 etcdserver: mvcc: database space exceeded的处理办法
  • MySQL——buffer poll
  • 使用GO--Swagger生成文档
  • Pac4j 学习笔记
  • 什么?RayLink远程控制软件支持企业IT应用!
  • LeetCode Hot100 51~60
  • docker 启动 redis 同时设置密码,关机后会自动重启
  • 3D Gaussian Splatting代码详解(一):模型训练、数据加载
  • docker部署RustDesk自建服务器
  • 工作实战总结与实现-mybatis-plus更新策略部分字段不更新问题
  • MFC扩展库BCGControlBar Pro v36.0新版亮点:黑色主题中的自动反转图标
  • Midjourney Describe API 的对接和使用
  • 《单片机原理及接口技术》(C51编程)(第三版)------张毅刚主编
  • Qt入门9——绘图
  • FreeRTOS之ARM CR5栈结构操作示意图
  • Java线程的interrupt中断、wait-notify/all(源码级分析)
  • 计网408考点讲解