当前位置: 首页 > news >正文

数据结构与算法——N叉树(自学笔记)

本文参考 N 叉树 - LeetBook - 力扣(LeetCode)全球极客挚爱的技术成长平台

遍历

img

  • 前序遍历:A->B->C->E->F->D->G
  • 后序遍历:B->E->F->C->G->D->A
  • 层序遍历:A->B->C->D->E->F->G

(中序遍历只在二叉树有明确定义)

前序遍历

递归

与二叉树一样

import java.util.*;// 定义N叉树节点
class Node{public int val;public List<Node> children; // 使用链表定义子节点public Node(){}public Node(int val){this.val = val;}public Node(int val, List<Node> children){this.val = val;this.children = children;}
}class Solution {public List<Integer> preorder(Node root){List<Integer> res = new ArrayList<Integer>();preorderRecursion(root,res);return res;}public void preorderRecursion(Node root, List<Integer> res){if(root == null){return;}res.add(root.val);for(Node node : root.children){preorderRecursion(node, res);}}
}
  • 时间复杂度:O(N),其中 N 是树的节点数。
  • 空间复杂度:O(N),即树的高度,最坏情况下递归栈和结果存储的空间需要O(N)的空间。

迭代

与二叉树不一样,很巧妙

class Solution {public List<Integer> preorder(Node root){List<Integer> res = new ArrayList<Integer>();if(root == null){return res;}Deque<Node> stack = new LinkedList<Node>();stack.push(root);while(!stack.isEmpty()){Node node = stack.pop();res.add(node.val);// 逆序入栈for(int i = node.children.size() - 1; i >= 0 ; i--){ stack.push(node.children.get(i)); }}return res;}
}
  • 时间复杂度:O(N),其中 N 是树的节点数。
  • 空间复杂度:O(N),即树的高度,最坏情况下递归栈和结果存储的空间需要O(N)的空间。

后序遍历

递归

class Solution {public List<Integer> postorder(Node root){List<Integer> res = new ArrayList<Integer>();postorderRecursion(root,res);return res;}public void postorderRecursion(Node root, List<Integer> res){if(root == null){return;}for(Node node : root.children){postorderRecursion(node, res);}res.add(root.val); // 与前序遍历的唯一区别}
}

迭代

与前序遍历相似

class Solution {public List<Integer> postorder(Node root) {// 创建一个列表用来存储后序遍历的结果List<Integer> res = new ArrayList<>();// 如果树为空,直接返回空结果if (root == null) {return res;}// 使用栈进行遍历,栈用来模拟递归Deque<Node> stack = new ArrayDeque<Node>();// 创建一个集合,用来记录已经访问过的节点Set<Node> visited = new HashSet<Node>();// 将根节点推入栈中stack.push(root);// 遍历栈中的节点,直到栈为空while (!stack.isEmpty()) {// 获取栈顶的节点Node node = stack.peek();// 如果当前节点没有子节点(叶子节点),或者子节点已经遍历过if (node.children.size() == 0 || visited.contains(node)) {// 弹出栈顶元素,并将其值加入结果列表stack.pop();res.add(node.val);// 继续下一次循环continue;}// 如果当前节点有未访问的子节点,逆序将子节点压入栈中for (int i = node.children.size() - 1; i >= 0; --i) {stack.push(node.children.get(i));}// 将当前节点标记为已访问visited.add(node);}// 返回存储后序遍历结果的列表return res;}}
  • 时间复杂度:O(N),其中 N 是树的节点数。
  • 空间复杂度:O(N),即树的高度,最坏情况下递归栈和结果存储的空间需要O(N)的空间。

层序遍历

常规方法

class Solution {public List<List<Integer>> levelOrder (Node root){List<List<Integer>> res = new ArrayList<>();if(root == null){return res;}Queue<Node> queue = new LinkedList<>();Node node = root;queue.offer(node);while(!queue.isEmpty()){List<Integer> level = new ArrayList<>(); // 创建子链表int size = queue.size(); // 计算当前层的大小for(int i = 0; i < size; i++){node = queue.poll(); // 把当前层的节点依次弹出,并加入小链表level.add(node.val);for(Node p : node.children){queue.offer(p); // 把下一层的节点依次加入队列}}res.add(level); // 将小链表加入大链表}return res;}
}
  • 时间复杂度:O(N),其中 N 是树的节点数。
  • 空间复杂度:O(N),即树的高度,最坏情况下递归栈和结果存储的空间需要O(N)的空间。

递归

N叉树的最大深度

class Solution {public int maxDepth(Node root){if(root == null){return 0;}int maxNmu = 0;List<Node> children = root.children;if (children != null){ // 增强for可以自动处理空集合,但不能处理null,最好添加判断for(Node p : children){maxNmu = Math.max(maxNmu,maxDepth(p)); // 找出最深层}}return maxNmu + 1;}
}

时间复杂度:O(n),其中 n 为 N 叉树节点的个数。每个节点在递归中只被遍历一次。

空间复杂度:O(height),其中 height 表示 N 叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于 N 叉树的高度。

http://www.lryc.cn/news/495051.html

相关文章:

  • 【趣味升级版】斗破苍穹修炼文字游戏HTML,CSS,JS
  • 【Oracle】个人收集整理的Oracle常用SQL及命令
  • Linux内核4.14版本——ccf时钟子系统(5)——通用API
  • 安装MySQL 5.7 亲测有效
  • 《Django 5 By Example》阅读笔记:p455-p492
  • Element-UI 官网的主题切换动画
  • Golang 构建学习
  • VM Virutal Box的Ubuntu虚拟机与windows宿主机之间设置共享文件夹(自动挂载,永久有效)
  • 分析 系统滴答时钟(tickClock),设置72MHz系统周期,如何实现1毫秒的系统时间?
  • C++优选算法十七 多源BFS
  • Mongodb入门到放弃
  • 青藤云安全携手财信证券,入选金融科技创新应用优秀案例
  • 在CentOS系统中安装工具包的时候报错的解决方法
  • cad软件打不开报错cad acbrandres dll加载失败
  • 14、保存与加载PyTorch训练的模型和超参数
  • 【前端开发】JS+Vuew3请求列表数据并分页
  • Trimble X12助力电力管廊数据采集,为机器人巡视系统提供精准导航支持
  • Docker 清理镜像策略详解
  • 【Linux】TCP网络编程
  • 排序学习整理(2)
  • AI蛋白质设计与人工智能药物设计
  • IOS ARKit进行图像识别
  • 初级数据结构——二叉搜索树
  • C++设计模式之组合模式中如何实现同一层部件的有序性
  • duxapp RN 端使用AppUpgrade 进行版本更新
  • 【计网】自定义序列化反序列化(三) —— 实现网络版计算器【下】
  • 神经网络中的优化方法(一)
  • Linux 计算机网络基础概念
  • qt QGraphicsEllipseItem详解
  • Python websocket