当前位置: 首页 > news >正文

环形链表系列导学

问题描述

给定一个单链表,可能存在一个环。我们的目标是找到环的入口节点,即从这个节点开始,链表进入循环。如果没有环,则返回 null

将链表问题转化为数学问题

状态序列与循环

我们可以将链表节点视为状态,每个节点的 next 指针代表状态转移函数 f f f。从头节点开始,我们可以得到一个状态序列:

  • x 0 , x 1 = f ( x 0 ) , x 2 = f ( x 1 ) , x 3 = f ( x 2 ) , … x_0, x_1 = f(x_0), x_2 = f(x_1), x_3 = f(x_2), \ldots x0,x1=f(x0),x2=f(x1),x3=f(x2),

如果链表中存在环,那么这个序列将出现循环

寻找循环起点

我们的目标是找到状态序列中最小的 μ \mu μ,使得对于某个最小的 λ \lambda λ,满足:

  • x μ = x μ + λ x_{\mu} = x_{\mu + \lambda} xμ=xμ+λ

其中:

  • μ \mu μ循环的起始位置(环的入口)
  • λ \lambda λ循环节的长度(环的长度)

Floyd 判圈算法的数学原理

阶段一:检测循环

使用两个指针:

  • 慢指针(slow):每次移动一步
  • 快指针(fast):每次移动两步

阶段二:找到循环的起始位置

数学推导

设:

  • 非环部分长度 a a a
  • 环的长度 b b b
  • 从环入口到相遇点的距离 c c c
  • 快指针在环内绕行的圈数 k k k ( k ≥ 1 k \geq 1 k1)
距离关系
  • 慢指针走的总距离
    D slow = a + c D_{\text{slow}} = a + c Dslow=a+c

  • 快指针走的总距离
    D fast = a + c + k × b D_{\text{fast}} = a + c + k \times b Dfast=a+c+k×b

  • 由于快指针速度是慢指针的两倍:
    D fast = 2 × D slow D_{\text{fast}} = 2 \times D_{\text{slow}} Dfast=2×Dslow

推导步骤
  1. 建立等式
    a + c + k × b = 2 × ( a + c ) a + c + k \times b = 2 \times (a + c) a+c+k×b=2×(a+c)

  2. 化简
    a + c + k × b = 2 a + 2 c a + c + k \times b = 2a + 2c a+c+k×b=2a+2c
    k × b = 2 a + 2 c − a − c k \times b = 2a + 2c - a - c k×b=2a+2cac
    k × b = a + c k \times b = a + c k×b=a+c

  3. 得出关系式
    a + c = k × b a + c = k \times b a+c=k×b

寻找环的入口
  • 快指针走了 a a a 步到达环入口
  • 慢指针从相遇点再走 b − c b - c bc 步也到达环入口

因为:
b − c = b − ( k × b − a ) = − ( k − 1 ) × b + a b - c = b - (k \times b - a) = - (k - 1) \times b + a bc=b(k×ba)=(k1)×b+a

具体例子

假设:

  • 非环部分长度 a = 3 a = 3 a=3
  • 环的长度 b = 4 b = 4 b=4
  • 快指针在环内绕行的圈数 k = 1 k = 1 k=1

根据推导:
a + c = k × b ⟹ c = k × b − a = 1 × 4 − 3 = 1 a + c = k \times b \implies c = k \times b - a = 1 \times 4 - 3 = 1 a+c=k×bc=k×ba=1×43=1

  • 慢指针走的总距离
    D slow = a + c = 3 + 1 = 4 D_{\text{slow}} = a + c = 3 + 1 = 4 Dslow=a+c=3+1=4

  • 快指针走的总距离
    D fast = 2 × D slow = 8 D_{\text{fast}} = 2 \times D_{\text{slow}} = 8 Dfast=2×Dslow=8

验证快指针的距离:
D fast = a + c + k × b = 3 + 1 + 1 × 4 = 8 D_{\text{fast}} = a + c + k \times b = 3 + 1 + 1 \times 4 = 8 Dfast=a+c+k×b=3+1+1×4=8

http://www.lryc.cn/news/494440.html

相关文章:

  • IDEA2024创建一个spingboot项目
  • Nginx:ssl
  • QT配置文件详解
  • 根据合约地址判断合约协议的方法
  • 联想YOGA Pro 14s至尊版电脑找不到独立显卡(N卡)问题,也无法安装驱动的问题
  • Spring Web开发注解和请求(1)
  • Supervisor使用教程
  • Spark基本命令详解
  • Three.js 相机视角的平滑过渡与点击模型切换视角
  • jenken 打包linux包遇到的问题(环境变量)
  • 使用 Go 语言中的 Context 取消协程执行
  • python图像彩色数字化
  • cesium 3dtile ClippingPlanes 多边形挖洞ClippingPlaneCollection
  • docker 僵尸进程问题
  • 微软要求 Windows Insider 用户试用备受争议的召回功能
  • husky,commit规范,生成CHANGELOG.md,npm发版
  • DETR:一种新颖的端到端目标检测与分割框架
  • 前端js面试知识点思维导图(脑图)
  • 【Java基础入门篇】一、变量、数据类型和运算符
  • 【llamafactory】安装与环境配置
  • Vue 3 + Vuex 埋点实现指南
  • 电子应用设计方案-30:智能扫地机器人系统方案设计
  • HTML飞舞的爱心(完整代码)
  • android shader gl_Position是几个分量
  • spine 动画层 动态权重
  • 《Python基础》之Python中可以转换成json数据类型的数据
  • 在oracle下载jdk显示400 Bad Request Request Header Or Cookie Too Large
  • MongoDB注入攻击测试与防御技术深度解析
  • 【Java基础入门篇】前言
  • Oracle 建表的存储过程